PARLBY CREEK - BUFFALO LAKE DEVELOPMENT PROJECT ENVIRONMENTAL IMPACT ASSESSMENT V O L U M E THREE - TECHNICAL APPENDICES PARLBY CREEK - BUFFALO LAKE DEVELOPMENT PROJECT ENVIRONMENTAL IMPACT ASSESSMENT V O L U M E THREE - TECHNICAL APPENDICES PREPARED BY: ENVIRONMENTAL MANAGEMENT CALGARY, ALBERTA MARCH, 1991 ASSOCIATES LIST OF APPENDICES TECHNICAL APPENDIX I WATER B A L A N C E ANALYSIS (1969-1988) T E C H N I C A L APPENDIX II WATER Q U A L I T Y T E C H N I C A L APPENDIX III PUBLIC CONSULTATION D A T A REPORT TECHNICAL APPENDIX I T h e W a t e r B a l a n c e Analysis report is a technical supporting document p r e p a r e d by W - E - R E n g i n e e r i n g L t d . for the P a r l b y C r e e k - Buffalo L a k e D e v e l o p m e n t Project Environmental Impact Assessment, p r e p a r e d by E n v i r o n m e n t a l Management Associates L t d . T h e results o f the water balance and water quality m o d e l l i n g were used to assess the impacts o f Buffalo L a k e stabilization o n water quality o f Buffalo L a k e and R e d Deer River. BUFFALO LAKE WATER B A L A N C E ANALYSIS (1969 - 1988) P r e p a r e d for: E n v i r o n m e n t a l M a n a g e m e n t Associates and Alberta Environment P r e p a r e d by: W - E - R Engineering L t d . A p r i l , 1990 Ref: twflll7/R043090.1 TABLE OF CONTENTS Page 1.0 2.0 3.0 4.0 INTRODUCTION 1 1.1 1 BACKGROUND APPROACH 5 2.1 2.2 METHODOLOGY INPUT D A T A 5 7 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 7 7 9 9 13 L a k e Levels and Volumes Precipitation Evaporation Surface Inflow D a t a G r o u n d w a t e r Inflow ANALYSIS RESULTS 15 3.1 3.2 15 17 EXISTING CONDITIONS STABILIZED CONDITIONS SUMMARY REFERENCES 2 0 LIST O F FIGURES Page Figure 1 Buffalo L a k e Contours 2 Figure 2 Buffalo L a k e Drainage Basin 3 Figure 3 Buffalo L a k e A r e a - Capacity Curves 8 Figure 4 Simulated Versus Measured Monthly Flows P a r l b y C r e e k near M i r r o r 14 Figure 5 Figure 6 B u f f a l o L a k e (1969-1988) W a t e r L e v e l s ( M a y to O c t o b e r ) Buffalo L a k e - E x i s t i n g vs. R e g u l a t e d W a t e r L e v e l s APPENDICES Appendix I A Appendix IB Appendix IC ; Input D a t a F i l e s Existing Condition Files Simulated Condition Files 18 19 1 1.0 INTRODUCTION T h e T e r m s o f R e f e r e n c e for the E n v i r o n m e n t a l Impact Assessment ( E I A ) o f the Buffalo L a k e Stabilization C o m p o n e n t identified water quality impacts as a potential major area of concern. In o r d e r to assist i n a detailed assessment o f water quality conditions a n estimate o f all lake inflows a n d outflows over a n extended p e r i o d was necessary for b o t h existing conditions and p r o p o s e d stabilized conditions. A m i n i m u m p e r i o d o f twenty years o f m o n t h l y values was considered a p p r o p r i a t e for this assessment. T h i s report outlines the a p p r o a c h used to generate this data and presents the results w h i c h were s u p p l i e d for the subsequent water quality analysis by H y d r o q u a l C a n a d a L t d . ( T e c h n i c a l A p p e n d i x II). T h e results w e r e also used by W - E - R E n g i n e e r i n g L t d . in assessing aspects o f surface water conditions for the E I A . 1.1 BACKGROUND Buffalo L a k e is located some fifty kilometres east of the C i t y o f R e d D e e r . R e c o r d e d lake elevations indicate fluctuations between E l e v . 781.21 o n M a y 1975 a n d E l e v . 779.25 o n O c t o b e r 1968 for a total range of 1.96 metres. T h i s translates into a large lake area 2 fluctuation (between 70 and 112 k m ) due to the l a k e shape a n d the l o n g , shallow shoreline (see F i g u r e 1). T h e first r e c o r d e d water level for Buffalo L a k e was t a k e n i n 1942 as a one shot m e a s u r e m e n t . T h i s was followed by r a n d o m elevation measurements t a k e n once or twice a year between the p e r i o d 1956 to 1964. In 1965, W a t e r Survey o f C a n a d a ( W S C ) started to collect readings three to seven times a year. A l a k e level r e c o r d e r was installed in 1971, w i t h a m i n i m u m o f a p p r o x i m a t e l y 10 readings a m o n t h (Station # 0 5 C D 0 0 5 , B u f f a l o L a k e 2 near E r s k i n e ) . T h e gross drainage area at the lake outlet is 1530 k m , however only 887 k m are contributing directly to the surface water inflow as shown i n F i g u r e 2. 2 BUFFALO LAKE DRAINAGE BASIN Figure. 2. 4 Inflow into the lake is m a i n l y through P a r l b y C r e e k . Inflow records are based o n the following two W S C stations located o n P a r l b y C r e e k : STATION NAME STARTING DATE DRAINAGE AREA (km ) 2 P a r l b y C r e e k at A l i x P a r l b y C r e e k near M i r r o r A u g u s t , 1983 M a y , 1981 GROSS EFFECTIVE 515 843 488 641 B o t h stations have been operating o n a seasonal basis, w i t h some missing data. T h e natural outlet o f Buffalo L a k e is T a i l C r e e k i n the southwest end o f the lake. The surveyed outlet elevation at 782.4 metres suggests surface outflows have not o c c u r r e d since lake levels have b e e n r e c o r d e d . A previous study ( A l b e r t a E n v i r o n m e n t , 1979) w h i c h extended historical levels b a c k to 1914 indicate the last time direct l a k e outflows o c c u r r e d was i n 1929. 5 2.0 APPROACH 2.1 METHODOLOGY L a k e inflows a n d outflows consist o f surface runoff inflow, groundwater inflow o r outflow, surface outflow, direct lake precipitation a n d l a k e evaporation. These components can be represented i n a mass balance equation as follows: Is + JGW = A S + 0 where: + E - P I = surface water inflow I = net groundwater inflow A S = change in lake v o l u m e O = lake surface outflow E = lake e v a p o r a t i o n P = lake precipitation s G W E a c h component is expressed in a monthly v o l u m e unit ( l O W ) . T h e most recent twenty year period, 1969 - 1988, was selected for analysis purposes as the data for this p e r i o d is m o r e comprehensive and reliable than previous periods. T h e lake surface outflow component is therefore zero for this p e r i o d under existing conditions. Existing condition data for the other components o f the above equation w e r e d e t e r m i n e d based on observed data and subsequent adjustments to account for imbalances. T h i s is discussed in further detail i n the following sections. Separate lake zones were r e q u i r e d for water quality assessments based o n the l a k e shape and observed circulation a n d mixing patterns. Initially three zones were identified, h o w e v e r this was reduced to the two zones, Secondary B a y a n d M a i n B a y as shown i n F i g u r e 1. Inflows and outflows for each zone were d e t e r m i n e d assuming a u n i f o r m c o n t r i b u t i o n o n a unit area basis. T h e ratios used to split the volumes for the two zones for each c o m p o n e n t are as follows: COMPONENT ZONE 1 MAIN BAY ZONE 2 SECONDARY B A Y Precipitation Evaporation Groundwater Surface Runoff Pump Inflow 0.73 0.73 0.793 0.058 0.0 0.27 0.27 0.207 0.942 1.0 Similarly, with precipitation and evaporation equal over the lake area, volume transfers from one zone to the other were computed as follows: Volume from 2 to 1 = 0.73 (I + I s where: GW )j -0.27 (I +I )i s GW I = total surface runoff volume including pump volume, if any, I = groundwater inflow, subscripts refer to the two zones (1 and 2). s c w After computation of the 20 year data set for existing conditions, inflows and outflows were generated for three proposed lake stabilization operating scenarios. These scenarios were as follows: SCENARIO START O F PUMPING L A K E E L E V A T I O N (m) END O F PUMPING L A K E E L E V A T I O N (m) 1 2 3 780.50 780.60 780.70 780.65 780.75 780.85 3 Pumping at a constant rate of 2.12 m /s was assumed with no delivery losses. Outflow from Buffalo Lake was assumed to occur at elevation 781.0 m such that this was the maximum end of month lake level. Outflow routings were not incorporated in the analysis. Pumping for a portion of a month was assumed to occur based on a linear interpolation between month-end levels. The volume pumped within a month was either the maximum pumping volume within the time available in the month when pumping started or the volume required to bring the lake up to target level, whichever was smaller. 7 2.2 DATA INPUT 2.2.1 Lake Levels and Volumes " E n d o f the m o n t h lake elevation" data was p r o v i d e d by H y d r o l o g y B r a n c h . D a t a for the p e r i o d 1971 to 1988 was based o n recorded W S C data w i t h a straight line interpolation between observed values whenever data was missing. T h e s e interpolations were m a i n l y required for the winter months. D a t a for the 1969-70 p e r i o d data was directly transposed from tables generated by A l b e r t a E n v i r o n m e n t , Planning D i v i s i o n i n 1983. E n d o f m o n t h lake levels are summarized i n A p p e n d i x L A . Elevation-area-capacity curves shown o n F i g u r e 3 for the entire lake a n d the t w o l a k e zones were based o n the hydrographic surveys i n 1965 by A l b e r t a E n v i r o n m e n t and extrapolations by H y d r o l o g y B r a n c h ( A l b e r t a E n v i r o n m e n t , 1980). These curves c o m b i n e d with the e n d of m o n t h lake levels above provide the estimated e n d o f m o n t h volumes a n d lake areas. These are s u m m a r i z e d i n A p p e n d i x L A for the 1969-1988 p e r i o d . 2.2.2 Precipitation E s t i m a t e d monthly precipitation values for Buffalo L a k e were supplied by H y d r o l o g y B r a n c h . M o n t h l y values for the 1969-80 p e r i o d were estimated by direct transposition o f observed monthly values at Stettler. M o n t h l y values for the 1981-88 p e r i o d were estimated o n a weighted Thiessen polygon basis as (0.3 * P M 1 R R O R + 0.7 * P S T E T T L ER)- These precipitation values are summarized i n A p p e n d i x L A In order to verify the validity o f using rainfall data from outside the study area, a correlation between precipitation at M i r r o r a n d Stettler was undertaken for the 1981-88 p e r i o d o f c o m m o n record. Results show: a monthly precipitation difference between b o t h stations o f 10 m m o r m o r e has occurred for a total o f 22 months out o f 77 months o f record ( 2 8 % o f the time). 9 2 correlation coefficient, R = 0.92 standard deviation = 10.5 m m 9 5 % confidence interval = +/- 20.6 m m T h e large confidence interval range indicates precipitation variations between M i r r o r a n d Stettler. T h i s is a potential source o f error i n input precipitation data which is discussed later. 2.23 Evaporation E s t i m a t e d monthly evaporation values for Buffalo L a k e were supplied by H y d r o l o g y B r a n c h . T h e values were estimated using M o r t o n ' s evaporation equation for a lake having a m e a n depth o f 3.0 metres a n d the same elevation a n d latitude as Buffalo L a k e . W i t h the exception o f dew point temperature, which for the 1981-88 p e r i o d were based o n data for M i r r o r , all input data was based o n the L a c o m b e climate station. T h e resulting evaporation values are shown i n A p p e n d i x L A . 2.2.4 Surface Inflow D a t a Surface inflow data was obtained from W S C station Parlby C r e e k near M i r r o r a n d supplemented by data from Parlby C r e e k at A l i x . T h e station near M i r r o r was selected as the p r i m e station because it has a larger drainage area more representative of Buffalo L a k e drainage area a n d it has a slightly longer p e r i o d o f record (1981-88). M i s s i n g data for the 1981-88 p e r i o d at P a r l b y C r e e k near M i r r o r were estimated i n the following manner: for the months with incomplete daily r e c o r d : by estimating missing daily discharge using daily runoff pattern from Parlby C r e e k at A l i x , for the months with only few daily discharge measurements a n d w h e n missing points were outside o f the peak runoff p e r i o d : by weight averaging the existing measurements, 10 as a last resort: by correlating P a r l b y C r e e k near M i r r o r a n d P a r l b y C r e e k at A l i x , z e r o flow was assumed for the N o v e m b e r to F e b r u a r y p e r i o d . Several c o r r e l a t i o n analyses w e r e investigated to extend the 1981-88 p e r i o d o f r e c o r d on Parlby C r e e k . M o r e sophisticated approaches c o u l d not be u n d e r t a k e n w i t h i n time and budget constraints. T h e analyses i n c l u d e d correlations o f c o m m o n m o n t h l y discharge records with other nearby W S C stations. T h e s e correlations p r o v i d e d p o o r results. T h e 36 months of c o m m o n r e c o r d between the two P a r l b y C r e e k stations, p r o d u c e d the best relation with 2 a c o r r e l a t i o n coefficient ( R ) o f only 0.58. T h i s p o o r c o r r e l a t i o n is likely due to differences in spring runoff a n d channel flow characteristics as w e l l as variable rainfall within the basin. A series o f rainfall runoff correlations w e r e then c o n d u c t e d w i t h the year d i v i d e d into periods reflecting distinct runoff mechanisms. T h e s e periods w e r e as follows: M a r c h to M a y , a snowmelt or rain-on-snow runoff p e r i o d J u n e w i t h a high runoff - rainfall ratio J u l y to O c t o b e r a reasonably u n i f o r m r u n o f f versus rainfall p e r i o d N o v e m b e r to F e b r u a r y a very l o w runoff p e r i o d that was assumed to be zero. C o r r e l a t i o n s d e v e l o p e d for these p e r i o d s are detailed b e l o w . March - M a y Period D a t a review i n d i c a t e d that n o direct relationship between p r e c i p i t a t i o n a n d runoff c o u l d be derived o n a m o n t h l y basis, since spring runoff is dependant o n a n u m b e r o f factors. Rather than introduce m o r e variables, due to t i m e a n d budget constraints, this p e r i o d was simply treated as a single p e r i o d for c o r r e l a t i o n analysis. T h e best c o r r e l a t i o n d e v e l o p e d was as follows: 11 R O = 0.0134 * R -1.103 where: (R 2 = 0.60) (2) R O is the average M a r c h to M a y runoff and R is a composite rainfall derived from the following equations: R = NP , Oct.) + P(NOT. lo May) N P = P -0.35 * E ( S E l o N P = net precipitation P = precipitation E = evaporation N e t precipitation was introduced in the above equation to account for rainfall losses i n the fall due to evapotranspiration. T h e S e p t e m b e r to O c t o b e r p r e c i p i t a t i o n reflects the importance of fall rainfall building u p soil moisture content and its subsequent impact o n spring runoff. M a r c h to M a y monthly flows were generated in a purely arbitrary manner, by p r o p o r t i o n i n g the flow with the monthly rainfall. W h i l e n o physical justification was d e t e r m i n e d for this approach, it p r o v i d e d a simplistic practical means for distributing the runoff over the p e r i o d . Individual M a r c h to M a y inflows generated in this manner do not represent physically v a l i d values and are to be used solely for longer t e r m trend evaluations as intended for this study. June P e r i o d T h e June runoff - rainfall ratio tends to be higher than ratios for the July - O c t o b e r p e r i o d since June represents a transition p e r i o d between spring snowmelt a n d the pure rainfall events of the summer. RO J U N E where: T h e c o r r e l a t i o n d e v e l o p e d for June was: = 0.00668 * R + 0.0075 (R 2 = 0.54) (3) R = 0.4 N P + 0.3 N P ^ + 0.2 N P ^ + 0.1 N P , ^ and N P = P - 0.3 * E J U N E 12 T h i s e q u a t i o n allows for antecedent soil moisture conditions based o n a weighted precipitation f r o m previous months. July - O c t o b e r P e r i o d D a t a review showed that July - O c t o b e r is a fairly homogenous rainfall-runoff p e r i o d . T h e best c o m p o s i t e ranfall - runoff relationship d e v e l o p e d for this p e r i o d was i n the same f o r m as the June r e l a t i o n . RO 2 JULtoocr = 0.00811 * R - 0.0394 where: ( R = 0.50) (4) R = 0.4 N P , + 0.3 N P ; , + 0.2 N P , a n d N P j = (P, - 0.3 * E ) ( 2 + 0.1 N P ^ t i signifies the months J u l y t o O c t o b e r . A rainfall - runoff c o r r e l a t i o n based o n yearly average data was also u n d e r t a k e n . Yearly results w e r e used t o adjust generated m o n t h l y inflows a n d r e m o v e any a c c u m u l a t e d errors from m o n t h l y analysis. T h i s composite r e l a t i o n was: R O Y E A R L Y = 0.00382 * R -0.605 where: (R 2 = 0.78) R = NP + PNOVIOJUN + N P a n d N P = P -0.3 * E S E P T + O C T (5) J U L + A U G T h e l o w c o r r e l a t i o n coefficients o f only 0.5 to 0.6 for the m o n t h l y values is d u e t o the high variability o f rainfall over the study a r e a a n d l a c k o f representative rainfall data w i t h i n the watershed as w e l l as other climatic factors. D a t a averaging o n a yearly basis p r o d u c e d a n 2 i m p r o v e d c o r r e l a t i o n ( R = 0.78). T h i s i n d i c a t e d that although generated m o n t h l y inflows are subject t o large errors, those errors can b e r e d u c e d b y a p p l y i n g corrections o n a yearly basis. 13 Surface inflow data was generated using the above relations for the 1969-88 period. C o m p a r i s o n o f the resulting 1981-88 monthly values with the W S C station values is shown on F i g u r e 4. W h i l e these results are still indicative o f large individual errors, they are considered acceptable for the long term trend evaluations intended for the water balance analysis. T h e monthly surface inflow values used for the Buffalo L a k e water balance are summarized i n A p p e n d i x I A . T h e 1969-80 values are based o n the above rainfall-runoff relations a n d the 1981-88 values are based o n the W S C measured discharges. A factor o f 1.24 was used to transpose the data from Parlby C r e e k near M i r r o r to Buffalo L a k e . T h i s is the ratio o f effective drainage areas contributing to surface inflow as illustrated o n F i g u r e 2. 2.2.S Groundwater Inflow G r o u n d w a t e r conditions were investigated by G o l d e r Associates L t d . as part o f the E I A study ( V o l u m e T w o , M a i n R e p o r t - Section 3.6). These investigations indicated Buffalo L a k e is i n a regional groundwater discharge area and depending u p o n the hydraulic conductivity value assumed, annual estimated inflows are in the range of 670,000 to 6,720,000 3 m . Seasonal variations are not expected to be significant due to the regional nature o f this inflow. In addition, no significant difference i n inflow rates between Z o n e 1 a n d 2 o f the lake were identified. G r o u n d w a t e r inflow rates for the water balance analysis were therefore assumed to be constant over the year a n d uniform over the lake area. Both upper and lower limit groundwater inflow rates were assessed due to the relative importance o f groundwater i n water quality assessments. T h e overall magnitude o f the groundwater component i n the water balance assessment is small however, i n c o m p a r i s o n to the other components (typically less than 5 % ) . 15 3.0 ANALYSIS RESULTS 3.1 EXISTING CONDITIONS A p p l y i n g the mass balance equation with the above input data resulted i n imbalances w i t h wide monthly fluctuations. Setting groundwater inflow to z e r o resulted i n an average 3 3 imbalance o f 342 d a m / m o n t h with a high standard deviation of 4572 d a m / m o n t h . This average c o m p u t e d imbalance is within the high side o f the practical range for groundwater inflow. These results are s u m m a r i z e d i n A p p e n d i x I B . T o assess possible e x p l a n a t i o n s for the wide fluctuations in the monthly imbalance figures, a sensitivity analysis o f the input data was conducted. A summary o f this follows: • T h e correlation of monthly rainfall records at the M i r r o r a n d Stettler stations w h i c h resulted i n a standard deviation of 10.5 m m , illustrates the spatial variation of rainfall and potential source of error. O n e standard deviation corresponds to an average difference o f about 1050 d a m / m o n t h i n the precipitation component. 3 • E v a p o r a t i o n is spatially less variable than precipitation, however errors are due to use of climatic records some 35 k m outside of the study area a n d from calculation approximations using M o r t o n s equation. A 10% variation i n the evaporation component is equivalent to about 600 d a m / m o n t h o n average. 3 • E r r o r s i n the surface inflow estimates are due to basic errors i n the W S C data (typically low i n the order o f 5%), flow generation errors for the 1969-80 p e r i o d a n d flow transposition assumptions to the entire lake basin. T h e major error i n this component is from the flow generation. T h i s is evident from fluctuations i n the imbalance results which average about three times greater for the 1969-80 p e r i o d than the 1981-88 p e r i o d . A reasonable 2 5 % v a r i a t i o n in this component corresponds to about 390 d a m / m o n t h o n average. 3 • L a k e v o l u m e calculations and monthly change in storage are subject to errors in the stage-area-capacity curve, interpolation between water level readings and level readings themselves. A 10-15% e r r o r i n the capacity curve is reasonable based on the available contour data. Interpolation of records was m i n o r for the 1971-88 p e r i o d w i t h readings approximately every t h i r d day. 16 D u e to the large lake area however, a difference o f one centimetre in lake level corresponds to about 1000 d a m . E r r o r s o f up to 5 c m or more are considered reasonable due to wave action, w i n d set-up, ice conditions, human factors a n d interpolations. C o n s i d e r i n g these factors, interpretations o f the storage change c o m p o n e n t directly f r o m the level records and the capacity curve could readily produce variations in the order o f 5000 d a m . 3 3 T h e s u m o f the above potential variations i n the monthly input data suggests the imbalance fluctuations c a n be accounted for i n the analysis. Inspection o f the imbalance figures also indicated major imbalances frequently tend to offset each other over a p e r i o d o f two or three months. T h i s is particularly true d u r i n g the spring due to ice conditions and possible lag affects o f runoff. R a t h e r than attempt to adequately account for all of these factors, adjustments were simply made in the precipitation and e v a p o r a t i o n components to produce a mass balance on a monthly basis. R e s u l t i n g individual monthly values for these c o m p o n e n t s are not physically valid i n most cases, however the water balance within the lake itself is preserved and the m o r e i m p o r t a n t l o n g t e r m trends are valid. T h e resulting water balance components for existing conditions are s u m m a r i z e d in A p p e n d i x I B for assumed u p p e r and l o w e r limit groundwater values. M o d e l l i n g for water quality assessment purposes requested balances for extreme limits i n the groundwater component. T h e s e were d e t e r m i n e d based o n m a x i m u m reasonable adjustments to the twenty-year average water balance results. A lower limit o f z e r o for groundwater inflow was used as a base case with a n u p p e r limit based o n the m e a n a n n u a l i m b a l a n c e (342 damVmonth) plus a 1 0 % increase in net evaporation. 3 T h i s t o t a l l e d 521 d a m / m o n t h w h i c h was w i t h i n the u p p e r groundwater limit suggested by G o l d e r Associates L t d ( V o l u m e T w o , M a i n R e p o r t Section 3.6). 17 3.2 STABILIZED CONDITIONS T h e above groundwater limits a n d adjusted existing condition data input files were used for simulations under the lake stabilization scenarios previously identified. T h e results for the three scenarios for b o t h u p p e r a n d lower groundwater limits are s u m m a r i z e d i n A p p e n d i x IC. C o m p u t e d l a k e outflows a n d p u m p v o l u m e files are included i n this summary. The water level frequency curves i n F i g u r e 5 c o m p a r e c o m p u t e d lake levels under the three scenarios with existing condition water levels. F i g u r e 6 compares existing versus regulated Scenario 3 levels for the 1969-88 p e r i o d assuming upper limit groundwater inflow. F u r t h e r comparisons a n d assessments o f the results are presented i n the E n v i r o n m e n t a l Impact Assessment report ( E M A 1 9 9 0 ) . 20 4.0 SUMMARY T h e B u f f a l o L a k e m o n t h l y water balance analysis was c o n d u c t e d for the 1969-88 p e r i o d . V a r i o u s simplifying assumptions were e m p l o y e d to generate input data and account for widely fluctuating imbalances. A s a result individual m o n t h l y parameters do not provide physically v a l i d values. T h e results however, were considered adequate for their intended purposes, n a m e l y to assess l o n g t e r m water quality trends a n d average stabilization impacts o n surface water flows and lake levels over the twenty year p e r i o d . A n y a p p l i c a t i o n o f these results for other purposes should be exercised w i t h due caution. REFERENCES A l b e r t a E n v i r o n m e n t , Planning Division. 1979. Buffalo L a k e R e g u l a t i o n Study. Regulation Alternatives. E n g i n e e r i n g Support Services. Phase I A l b e r t a E n v i r o n m e n t , Hydrology B r a n c h , 1989. Buffalo L a k e Stabilization. H y d r o l o g y R e p o r t 5 C D 89-246. E n v i r o n m e n t a l M a n a g e m e n t Associates, 1991. Parlby C r e e k - Buffalo L a k e D e v e l o p m e n t Project. P r e p a r e d for A l b e r t a E n v i r o n m e n t , Planning D i v i s i o n . P r e p a r e d by E n v i r o n m e n t a l M a n a g e m e n t Associates, Calgary, A l b e r t a . APPENDIX LA INPUT DATA FILES APPENDIX D3 EXISTING CONDITIONS BUFFALO LAKE WATER BALANCE - EXISTING CONDITIONS LAKE EVAPORATION (DAM~3) APR MAY JUN JAN MAR FEB • 959 279 3699 8611 289 11208 94 . 3678 12286 188 8592 391 , 191 '971 391 3819 9803 12026 201 303 "9 ; 304 613 4556 10240 12681 203 3813 104 c29 8936 11875 312 lg73 114 8094 110 3131 13373 no 1975 2620 8056 956 119 119 12202 1976 354 5707 255 1065 12691 11063 •9" 6677 393 2179 10276 13695 343 1978 674 4080 12874 335 8892 112 ^ 9 4467 226 1021 8515 11833 339 •96" ill 4257 10307 112 12785 0 1981 112 1466 5880 9733 12279 0 1982 216 9734 13010 109 327 4157 '953 223 223 4946 10395 12079 782 •959204 219 529 6065 10963 1322 137 11411 14586 1985 858 5531 0 1074 '95e 107 5069 13455 107 10123 1987 5414 548 11627 15105 109 109 207 •=99 205 1975 11589 14226 6789 YEAR r ; - UPPER LIMIT GROUNDWATER = 521 DAM"3/MONTH JUL 12673 14435 11620 12968 13987 17187 14758 14170 15342 15129 14626 14604 13842 14388 13660 14471 16265 14337 15570 14938 AUG 12762 13590 11703 13080 13877 14879 14300 14304 12724 13928 14483 13938 14346 12761 14774 14739 14391 13966 12572 13574 SEP 9220 9931 10118 9304 9833 9493 10421 10706 " 8312 9268 10756 8879 10997 8923 10062 9442' 8224 9764 9383 9235 OCT 3674 4285 4745 3220 4354 4372 5071 5076 3923 3972 5121 3804 4106 4336 3622 3186 2981 3810 5376 4240 NOV 1131 1099 1210 933 1088 1652 1532 1493 1677 1587 1221 1559 970 1334 1092 744 957 1199 1567 1408 DEC 566 500 607 519 328 828 826 803 783 793 222 779 540 445 546 320 320 327 416 301 DEC 851 850 1188 901 2703 2159 989 -988 -93 -901 451 2340 1439 720 357 1346 631 269 -2487 -514 STORAGE CHANGE IN LAKE (DAM"3) OAN MAR APR FEB 0 8498 6802 0 6802 5099 -1701 10199 2'22 768 1359 16951 '105 2635 8^08 1188 4142 696 900 5989 -8284 2"90 2629 35733 2252 2'59 -539 2928 965 901 2159 6032 -959 -901 5218 270 5757 6301 •9"-6 -88 0 7202 6026 • 9" 9 -901 -608 357 •959 950 2703 2791 2340 4406 '55' 29 39 -445 4230 '5=2 1439 1439 1533 807 5756 '599 725 1621 • 59: 363 450 7108 -5581 '945 1263 1258 813 10887 9862 "996 532 0 626 "957 3691 6119 0 539 -2464 -2464 13534 5131 " 955 HAY -4254 7648 1351 9092 -1170 28801 19172 -4950 4141 1713 4 50 -2703 1527 8459 813 -1796 1709 9992 -3598 -11701 JUN -2548 2552 -543 0 6932 2521 -9004 -807 -8822 -2521 -2790 3961 -7471 -2252 -1983 2428 -10349 -4680 -9629 -1947 JUL -5950 -13603 1889 -2522 -1170 -3329 -6839 -7383 -9085 -9542 -4856 -1802 -4136 6031 2071 -10618 -7740 5218 -3873 -4846 AUG 851 0 -11912 -4949 9361 -2164 -7470 -5219 -3241 2703 -8553 2521 -9542 -1620 -12870 -8910 3779 -8553 -2697 -2890 SEP 850 851 -7481 -3510 -1083 -3867 -4856 -7113 0 5488 -4230 -2609 -5669 -2878 -2066 2071 -1890 2253 -5131 -1618 OCT NOV 0 1702 -2382 -2482 -3059 -4142 -2791 -6295 -2791 -269 -3779 -3148 -2521 -1083 -6481 -995 -1345 1351 -6031 -2548 0 0 1194 861 2790 2252 989 -995 -88 -901 4 50 -2884 0 720 450 1264 626 269 -2609 -508 SURFACE INFLOW TO LAKE (DAM"3) MAR APR JAN FEB 1941 4621 0 0 0 9235 3888 0 5076 0 0 0 0 1830 c 1628 0 2680 5757 0 4057 0 8118 0 0 2612 6438 0 0 6346 466 0 0 111 0 88 0 3761 0 290 0 1185 5106 c 0 3370 1501 0 0 322 4591 0 4754 0 65 0 0 81 10257 0 430 3907 0 0 0 567 0 19798 0 5438 5405 0 85 0 7848 0 88 417 0 0 MAY 4790 14578 3422 13217 2022 13484 7721 8518 4735 17720 12169 6672 2719 14034 1944 752 4754 3940 2791 234 JUN 42 2491 290 1882 2475 407 602 996 208 980 365 2227 983 1091 899 1716 524 1889 427 840 JUL 1039 2413 964 2348 2390 358 1052 674 104 922 466 1762 147 2556 3777 81 0 781 117 1169 AUG 746 1579 668 1553 2797 576 726 781 156 1159 306 2048 593 1846 1228 0 528 1267 316 1723 SEP 1280 742 430 1026 3129 358 374 407 287 1654 166 1491 107 2318 36 355 554 482 36 342 OCT 879 195 117 234 1654 176 251 46 192 1114 23 531 186 1078 7 619 772 795 72 401 NOV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •649 '959 •9"9 ' 9"' •?72 • 973 1974 :97: 1976 • ;-7 YEAR "569 "970 "97': '972 '972 :97i •975 '975 577 1976 1979 1980 1581 582 '.982 1984 1985 1965 1967 '966 0 DEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 BUFFALO LAKE WATER BALANCE - EXISTING CONDITIONS - UPPER LIMIT GROUNDWATER = 521 DAM~3/MONTH YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 LAKE PRECIPITATION (DAM"3) JAN MAR FEB 1 190 1875 655 999 1097 2230 4336 1364 1209 1835 4068 736 0 292 2055 5143 2264 4363 2562 2641 3269 2975 2411 3386 779 172 264 3209 1789 180 475 2981 590 2001 1246 2253 693 920 2255 4644 4941 1259 1459 1383 1565 2864 0 1949 587 1338 322 395 1612 2569 676 2270 3495 454 1715 6591 APR 1577 954 0 663 4459 2227 6514 250 207 2357 2566 1008 1244 541 2080 1930 3763 2492 1602 265 MAY 1625 3639 959 5490 1574 7484 7888 4568 11373 11172 6144 4481 10186 7367 3706 4514 3774 7533 2846 1475 JUN 2702 24807 6488 18212 18016 5779 5654 14767 2751 10938 6916 18953 3177 7294 15228 11632 3690 6607 2496 8879 JUL 16314 7985 11599 10608 7919 8844 14542 4664 5171 7836 8924 5617 6073 19965 8953 4537 5918 17609 7861 8808 AUG 2684 1091 345 4093 12142 10606 6375 8770 7590 11940 5567 10543 1766 10769 1589 2702 17077 2717 10466 9308 SEP 11695 2622 4027 5060 11428 3857 2309 2420 8671 14728 4426 5193 4530 3803 2455 12402 5393 10534 3156 6922 CALCULATED IMBALANCE (DAM-3) - UPPER LIMIT GROUNDWATER = 521 0AM~3/MONTH JAN FEB MAR APR MAY JUN JUL AUG SEP 7238 5016 -1978 -1537 6437 -2384 10704 -10109 -390 -1991 9814 -3751 4456 -1456 11441 -11939 -9045 7939 -1392 281 -4257 7294 21291 5226 1467 -701 -1299 95 -2156 1203 11494 1146 -6892 3006 1972 -1989 229 1973 1729 1233 557 -394 4691 -1163 3029 8820 -5286 1974 -1722 1065 23887 -10916 16448 2054 10229 5177 1932 1975 567 -•."9 -5152 -7383 12140 -2537 -7154 250 3403 '976 -1112 -753 -5987 11544 -6452 1287 -3358 1970 55 1977 -904 -209 7543 7173 -1170 2435 1503 2258 -125 1978 -2353 -1244 6482 4784 -17766 -1044 -2650 4053 -1105 1979 -516 -3042 6969 3342 -8827 2283 901 578 2455 i 980 -919 -368 -2287 5060 -3028 -3913 5944 4389 107 1981 2379 1941 3816 121 -1124 1169 4007 2966 1212 1932 -2468 810 -2625 3213 -2687 2894 -1581 -953 445 10 168 1278 1963 -1114 6079 -5510 3522 -392 6026 1984 -1761 1299 6572 -4832 2663 564 -244 3648 -723 1304 441 '985 1303 -6622 544 5113 3128 1086 908 1 966 865 -1836 -2340 9163 800 -358 1686 1950 1522 1987 -1101 1180 2604 -46 2913 3074 4240 -386 1581 1988 -2190 -3453 9351 11759 -1300 3081 636 174 875 YEAS 1969 1970 1971 YEAR 1969 '•970 1971 1972 1973 1979 1975 1976 1977 1978 1979 1980 1981 19S2 1983 1984 1985 '986 '987 '95-5 END OF MONTH TOTAL LAKE VOLUME (DAM"3) JAN FEB MAR APR MAY 215052 223550 230352 230352 226098 218451 228650 235452 240551 248199 242673 243441 244800 261751 263102 246160 247348 249983 258691 267783 256978 257878 262020 267508 266338 285602 288300 324033 315749 344550 340232 342391 341852 344280 363452 335458 336359 338518 344550 339600 309811 308910 314128 314398 318539 294419 294331 300088 306389 308102 301258 300450 307652 313678 314128 291271 291628 294331 297122 294419 295232 297572 301978 301533 303060 276599 278038 279571 283801 292260 292623 293430 295051 300807 301620 281461 281911 289019 283438 281642 269491 270749 271562 282449 284158 268502 269128 273990 273990 283982 280109 280648 284339 290458 286860 251939 249475 263009 268140 256439 JUN 223550 250751 262559 267783 273270 347071 354448 338793 309717 305581 311338 298380 295589 290008 299637 284070 273809 279302 277231 254492 JUL 217600 237148 264448 265261 272100 343742 347609 331410 300632 296039 306482 296578 291453 296039 301708 273452 266069 284520 273358 249646 AUG 218451 237148 252536 260312 281461 341578 340139 326191 297391 298742 297929 299099 281911 294419 288838 264542 269848 275967 270661 246756 SEP 219301 237999 245055 256802 280378 337711 335283 319078 297391 304230 293699 296490 276242 291541 286772 266613 267958 278220 265530 245138 OCT 2223 3348 485 654 882 449 3255 231 560 2292 1603 817 2032 1823 1152 4450 1533 2253 875 1060 NOV 1470 3096 1462 2571 3917 271 1107 1401 1677 3129 577 134 108 1145 1561 1923 1085 2475 470 292 OEC 3198 850 2509 364 2165 2639 5708 4884 2560 1189 2444 2971 389 412 2983 2929 1129 349 1475 2059 OCT NOV 182 -1476 1463 -256 482 4154 1935 OEC -1260 1021 -293 1 577 •387 1093 2565 2282 ' 371 -720 126 -705 -975 901 518 237 -171 -112 873 -3497 -2357 -148 2639 -1081 7S2 OCT 219301 239701 242673 254320 277319 333569 332492 312783 294600 303961 289920 293342 273721 290458 280291 265618 266613 279571 259499 242590 esg 433 -1922 1615 -938 1383 1430 502 606 1019 -986 -991 1129 -3372 -4548 -1349 -776 -1250 669 2111 1274 -1559 -742 343 768 -3025 -1751 NOV 219301 239701 243867 255181 280109 335821 333481 311788 294512 303060 290370 290458 273721 291178 280741 266882 267239 279840 256890 242082 DEC 220152 240551 245055 256082 282812 337980 334470 310800 294419 302159 290821 292798 275160 291898 281098 268228 267870 280109 254403 241568 -382 LIMIT GROUNDWATER (521 DAM'3/MONTH) MAY AUG SEP JUN JUL 8097 8269 5163 12346 0 9519 1141 11826 11490 0 1686 7211 10672 12024 0 4247 6057 5594 10278 7577 5100 9906 19920 5223 15811 4747 12979 11618 22890 14966 4670 18986 6346 5583 2075 266 5 7783 10367 5592 0 7504 8806 9161 4144 5632 4144 14951 12581 8852 0 5839 0 8157 8783 5103 411 4258 10519 13890 13998 4700 3304 3690 8020 9038 3206 17342 8774 3638 9146 7439 155 8743 8676 11433 10637 6135 11154 5308 3251 8004 17121 5259 7845 3192 11014 15654 3625 6365 18253 9038 3695 4717 4528 11059 6755 8440 10918 8402 0 YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 ADJUSTED PRECIPITATION (DAM"3) - UPPER JAN FEB MAR APR 0 8071 4629 0 0 9869 4368 0 1902 20249 448 0 888 897 11115 870 687 483 1570 3023 2379 2287 27208 0 2087 1757 0 0 821 616 10752 0 6765 6338 0 0 0 5620 6099 0 0 6517 4866 0 40 5026 0 0 2025 323 1819 5029 1134 1274 3112 1027 427 509 1801 0 61 0 257 7479 849 0 737 583 218 10 212 0 3164 127 3633 0 0 14900 10982 0 YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 ADJUSTED EVAPORATION (DAM~3) - UPPER LIMIT GROUNDWATER (521 DAM- 3/M0NTH) APR MAY JUN AUG JAN MAR JUL FEB 5142 12762 94 9565 12673 521 289 11208 13590 2954 8592 12286 16537 2222 191 3678 13101 301 201 3819 9803 12026 11620 4238 304 13080 613 4556 10240 12681 12968 203 13877 8936 13987 312 104 629 3813 11875 114 8094 17187 14879 110 110 12862 13373 14300 3672 8056 14758 356 119 4531 12202 354 5707 14304 13989 12691 14170 236 4708 12724 6677 15342 1510 1422 2179 10276 13695 674 12874 15129 13928 521 609 4080 16528 4467 14626 14483 1422 1329 1021 12240 11833 4257 14604 13938 111 164 10307 12785 1188 13842 14346 0 1466 5880 9733 12279 112 4157 9734 12761 216 109 327 13010 • 14388 14774 13660 223 223 782 5022 10395 12079 14739 219 9204 10963 14471 328 1322 10009 107 11411 16265 14391 0 858 9432 14586 14337 13966 107 107 1074 5959 10123 13455 12572 5414 15105 15570 521 109 548 11627 13574 14226 14938 2985 2985 1975 6789 12456 SEP 9220 9931 10118 9304 9833 9493 10421 10706 8312 9268 10756 8879 10997 8923 10062 9442 8224 9764 9383 9236 OCT 2274 5271 1725 0 0 NOV 610 578 1883 1273 3357 0 1508 0 419 2068 798 0 878 1654 0 1051 343 3845 0 770 3383 OCT 3674 4285 4745 3237 5234 4839 5071 6862 3923 3972 5121 9200 4106 NOV 1131 4 336 7009 3186 2981 3810 6624 4240 2000 0 1066 165 1150 0 449 1533 1021 1487 1062 947 0 379 1099 1210 933 1088 1652 1532 1516 1677 1587 1221 DEC 696 329 1274 699 2510 2466 1294 0 169 0 152 2593 1458 644 382 1145 430 75 0 0 DEC 566 500 607 519 228 923 626 " 509 783 •422 222 3405 970 1334 1092 744 957 779 540 445 1199 327 3130 1906 2008 596 320 320 1035 APPENDIX IC SIMULATED CONDITION FILES 3 SCENARIO 1 - GROUNDWATER = 0 D A M / M O N T H SIL.OUT 4/20/90 Page 1 BUFFALO LAKE WATER BALANCE JAN 17/90 SCENARIO 1 - LOWER LEVEL GROUNDWATER (0 DAM"3/M0) END OF MONTH LAKE ELEVATION (M) YEAR JAN FEB MAR APR 1969 779.530 779.630 779.710 779.710 1970 779.988 780.103 780.178 780.235 1971 780.573 780.582 780.596 780.790 1972 780.613 780.627 780.656 780.755 1973 780.733 780.743 780.789 780.850 1974 781.000 781.000 781.000 780.912 1975 780.932 780.954 780.950 780.981 1976 780.723 780.732 780.760 780.821 1977 780.488 780.479 780.531 780.534 1978 780.531 780.530 780.589 780.657 1979 780.624 780.616 780.691 780.757 1980 780.538 780.542 780.573 780.603 1981 780.595 780.619 780.665 780.664 1982 780.558 780.573 780.590 780.637 1983 780.742 780.751 780.768 780.834 1984 780.633 780.638 780.714 780.656 1985 780.602 780.615 780.624 780.748 1986 780.600 780.607 780.661 780.662 1987 780.730 780.736 780.776 780.844 1988 780.430 780.403 780.551 780.607 TOTAL PUMPING VOLUME (DAM~3) MAR YEAR JAN FEB 0. 1969 0. 0. 1970 0. 0. 0. 1971 0. 0. 0. 0. 1972 0. 0. 0. 0. 1973 0. 0. 1974 0. 0. 0. 0. 1975 0. 0. 0. 1976 0. 0. 0. 1977 0. 0. 0. 0. 1978 0. 0. 1979 0. 0. 0. 0. 1980 0. 0. 1981 0. 0. 0. 1982 0. 0. 0. 0. 1983 0. 0. 1984 • 0. 0. 0. 0. 1985 0. 0. 0. 1986 0. 0, 1987 0. 0. 0. 0. 1988 APR 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL SURFACE INFLOW INTO LAKE (DAM~3) YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 19" FEB JAN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. U. 0. 0. 0. MAR 1941. 9235. 5076. 1830. 2680. 8118. 2612. 6346. 111. 290. 1185. 3370. 322. 65. 81. 430. 567. 54U3. 5405. 85. 85. 88. APR 4621. 3888. 0. 1628. 5757. 4057. 6438. 466. 88. 3761. 5106. 1501. 4591. 4754. 10257. 3907. 19798. MX. 5438. 7848. i n 417. MAY 779.738 780.383 780.804 780.855 780.836 781.000 781.000 780.781 780.581 780.690 780.772 780.580 780.681 780.734 780.844 780.638 780.768 780.771 780.806 780.490 JUN 779.777 780.473 780.798 780.854 780.914 781.000 780.909 780.774 780.498 780.665 780.743 780.623 780.605 780.710 780.823 780.664 780.656 780.721 780.703 780.531 JUL 779.780 780.385 780.819 780.826 780.900 780.966 780.842 780.701 780.471 780.568 780.694 780.605 780.563 780.775 780.847 780.551 780.573 780.777 780.661 780.504 AUG 779.856 780.448 780.684 780.770 781.000 780.945 780.768 780.650 780.501 780.596 780.606 780.633 780.487 780.759 780.711 780.486 780.614 780.685 780.632 780.527 SEP 779.932 780.519 780.600 780.731 780.987 780.906 780.720 780.580 780.501 780.654 780.563 780.607 780.491 780.730 780.690 780.570 780.594 780.709 780.577 780.509 OCT 779.998 780.539 780.573 780.703 780.953 780.864 780.693 780.518 780.533 780.652 780.524 780.575 780.528 780.719 780.621 780.560 780.579 780.724 780.512 780.523 MAY 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 887. JUN 5617. 5617. 0. 0. 0. 0. 0. 0. 466. 0. 0. 0. 0. 0. 0. 0. 0. 0. JUL 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2309. AUG 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 2013. 0. 0. 2555. 0. 0. 0. 4956. SEP 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 5617. 0. 0. 0. 0. OCT 5617. 0. 0. 0. 0. 0. 0. 0. 5399. 5617. I NOV 779.998 780.539 780.587 780.712 780.984 780.887 780.703 780.508 780.532 780.643 780.529 780.546 780.528 780.727 780.626 780.573 780.586 780.727 780.484 780.518 DEC 780.008 780.549 780.601 780.723 781.000 780.909 780.713 780.498 780.531 780.634 780.534 780.570 780.543 780.734 780.630 780.588 780.593 780.730 780.456 780.512 V 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 3897. - INCLUDE PUMPING VOLUME MAY 10407. 20195. 3422. 13217. 2022. 13484. 7721. 8518. 4735. 17720. 12169. 6672. 2719. 14034. 1944. 752. 4754. JS»U. 3940. 2791. 2791. n»i 1121. JUN 5659. 8108. 290. 1882. 2475. 407. 602. 996. 674. 980. 365. 2227. 983. 1091. 899. 1716. 524. 1889. I0O3. 427. 427. 6457. JUL 6656. 8030. 964. 2348. 2390. 358. 1052. 674. 5721. 922. 466. 1762. 147. 2556. 3777. 81. 0. 781. ;oi. 117. 117. -U7R 3478. AUG 6363. 7196. 668. 1553. 2797. 576. 726. 781. 5773. 1159. 306. 2048. 2606. 1846. 1228. 2555. 528. 1267. . 316. 316. fifi q 6679. 7 SEP 6897. 6359. 430. 1026. 3129. 358. 374. 407. 287. 1654. 166. 1491. 5724. 2318. 36. 5972. 554. 482. 36. 36. 342 342. . CCT 6496. 195. 117. 234. 1654. 176. 251. 46. 5591. 1114. 23. 531. 5803. 1078. 7. 619. 772. 795. 72. 72. 4298. 4298. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SIL.OUT 4/20/90 Page 2 LAKE PRECIPITATION (DAM"3) YEAR OAN MAR FEB 1969 279. 8592. 5150. 1970 0. 10438. 0. 1971 2501. 1000. 0. 1972 1451. 1429. 1456. 1973 1231. 1022. 2128. 1974 2925. 2811. 27626. 1975 2393. 2093. 0. 1976 1202. 1019. 0. 1977 0. 0. 6512. 1978 309. 22. 5656. 1979 0. 0. 6497. 1980 520. 0. 331. 1981 2359. 2177. 5161. 1982 1580. 1478. 1713. 1983 903. 981. 2212. 1984 555. 7647. 744. 1985 1336. 1225. 1075. 1986 721. 715. 518. 1987 106. 629. 4036. 1988 0. 0. 15173. APR 0. 4882. 21370. 11940. 3611. 0. 0. 10132. 6158. 6122. 5003. 5152. 786. 3467. 424. 0. 0. 0. 3587. 11426. MAY 0. 1647. 8003. 6280. 5844. 21942. 17973. 0. 8663. 0. 0. 866. 7927. 3975. 8860. 6328. B193. 15736. 5104. 0. JUN 7762 12305 11369 11030 16511 14523 2375 9767 4190 8661 8038 13438 3556 9265 8763 11141 3604 6742 4883 11113 JUL 5240. 0. 12720. 8194. 10596. 12437. 6175. 5494. 5478. 4298. 8597 . 10271. 8831. 16972. 11367. 3611. 8211. 18160. 11165. 8848. AUG 12026. 11990. 0. 6646. 20615. 11136. 5475. 7420. 8376. 14186. 5188. 13351. 3902. 8886. 645. 5532. 17079. 4041. 9275. 8921. SEP 8493. 10294. 2223. 4816. 5703. 4832. 4640. 2847. 7305. 12125. 5851. 4443. 4841. 3542. 7515. 10685. 5650. 11130. 4100. 7336. OCT 2762. 5995. 2286. 511. 0. 49. 1813. 0. 858. 2401. 1218. 116. 1315. 2066. 0. 1534. 841. 4251. 0. 1306. LAKE EVAPORATION (OAM-3) YEAR JAN FEB 1969 279. 94. 1970 1714. 192. 1971 207. 311. 1972 313. 209. 1973 318. '06. 1974 111. 110. 1975 327. 109. 1976 317. 212. 1977 884. 805. 1978 309. 103. 1979 832. 746. 1980 103. 0. 1981 104. 0. 1982 206. 104. 1983 212. 212. 1984 314. 209. 1985 104. 0. 1986 104. 104. 1987 106. 106. 1989 2412. 2420. APR 4621. 3673. 3929. 4675. 3885. 11948. 3683. 5129. 5994. 3773. 4148. 3954. 5475. 3967. 4714. 9107. 8669. 5314. 5269. 6743. MAY 8017. 8514. 10146. 10516. 9091. 7586. 7422. 12157. 9195. 14811. 10881. 9572. 9034. 9303. 9942. 8751. 11175. 9848. 11328. 11712. JUN 10095 12245 12215 12952 12005 12541 11163 11384 12301 11896 10960 11833 11417 12468 11509 10462 14160 13173 14607 13820 JUL 11683. 15972. 11782. 13121. 14213. 15834. 13271. 12736. 13659. 13939. 13514. 13587. 12788. 13670. 12989. 13855. 15666. 13868. 15012. 14813. AUG 11928. 13567. 12775. 13215. 13995. 13649. 12827. 12782. 11426. 12770. 13360. 12913. 13294. 12199. 14096. 13988. 13932. 13611. 12199. 13513. SEP 8909. 10183. 10193. 9399. 9977. 8707. 9315. 9565. 7567. 8577. 9895. 8255. 10196. 8480. 9500. 9042. 8040. 9421. 9124. 9312. OCT 3630. 4435. 4829. 3264. 4737. 4001. 4531. 5650. 3581. 3583. 4728. 3524. 3861. 4119. 6181. 3110. 2900. 3710. 5933. 4288. •.:. APR MAY 0. 0. 0. 0. 0. 19949. 16561. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. JON 0 0 0 0 0 2389 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JUL AUG SEP OCT SO'. OUTFLOW FROM LAKE (DAM~3 YEAR OAN FEB 1969 0. 0. 1970 0. 0. 1971 0. 0. 1972 0. 0. 1973 0. 0. 1974 2814. 2701. 1975 0. 0. 1976 0. 0. 1977 0. 0. 1978 0. 0. 1979 0. 0. 1980 0. 0. 1981 0. 0. 1982 0. 0. 1983 0. 0. 1984 0. 0. 1985 0. 0. 1986 0. 0. 1987 0. 0. 1988 0. 0. MAR 289. 2462. 3827. 629. 640. 114. 2897. 3754. 1947. 62' . 942. 618. 1363. 312. 795. 1264. 835. 1047. 532. 1943. MAR 0. 0. 0. 0. 0. 35630. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 455. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1140. 1137. 2467. 1623. 3894. 3567. 2253. 444. 1460. 633. 1544. 0. 924. 1955. 1465. 1955. 1542. 1428. :. 917. 1140. 1137. 1242. 945. 1093. 1509. 1369. 1330. 1541. 1465. 1128. 2671. 924. 1269. 1038. 724. 922. 1166. 2541. 1434. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OEC 1428. 1393. 1849. 1447. 3058. 2741. 1626. 0. 6 25. 0. 624. 2890. 1889. 1110. 863. 1625. 928. 579. 0. 0. 050 570. 516. 625. 529. 32-. 750. -46. 6-80 "2' . 622. 266. 722. 5-5. 424. 522. 312. 3'2. 318. 2434. 525. OEC 0. 0. 0. 0. 1300. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S1L.0UT 4/20/90 Page 3 STORAGE CHANGE I N LAKE (0AM"3) •OAR OAS MAR FEB 1969 0. 8498. 6802. ' J " -1714. 10246. 6773. 2190. 793. 1249. 1972 1138. 1221. 2656. '5-3 5'3. 9-6. 4168. 0. 0. 0. '5"5 2066. 1984. -285. ' ?-6 88S. SOS. 2592. '5-7 -884. -805. 4675. '5-5 c. -81. 5325. •4-5 -832. -746. 6739. 1980 417. 331. 2752. '55' 2256. 2177. 4120. 1982 1374. 1374. 1466. 1963 691. 769. 1548. •554 347. 430. 6813. •555 1232. 807. 1225. •755 617. 610. 4876. 1987 0. 523. 3588. •55.5 -2412. -2420. 13318. 0. 5097. 17440. 8893. 5483. -7891. 2755. 5469. 251. 6110. 5960. 2699. -98. 4254. 5967. -5200. 11129. 124. 6165. 5099. MAY 2390. 13328. 1279. 8981. -1226. 7891. 1710. -3639. 4204. 2909. 1288. -2034. 1613. 8706. 862. -1671. 1772. 9828. -3434. -10592. JUN 3326. 8169. -556. -40. 6981. 0. -8186. -621. -7437. -2255. -2557. 3832. -6877. -2113. -1847. 2395. -10031. -4542. -9298. 3749. JUL 213. -7942. 1902. -2579. -1228. -3039. -6044. -6568. -2460. -8719. -4451. -1554. -3810. 5858. 2155. -10162. -7455. 5073. -3730. -2487. AUG 6461. 5620. -12107. -5016. 8962. -1938. -6626. -4580. 2722. 2575. -7866. 2486. -6786. -1467. -12223. -5901. 3675. -8303. -2608. 2087. SEP 6482. 6471. -7539. -3556. -1145. -3517. -4301. -6312. 26. 5202. -3878. -2321. 369. -2620. -1949. 7615. -1835. 2191. -4988. -1634. OCT 5627. 1755. -2426. -2519. -3083. -3775. -2467. -5604. 2869. -168. -3487. -2877. 3258. -975. -6174. -956. -1288. 1336. -5861. 1316. NOV 0. 0. 1225. 875. 2802. 2058. 884. -886. -81. -832. 416. -2671. 0. 685. 428. 1231. 610. 262. -2541. -518. DEC 858. 877. 1223. 918. 1426. 1981. 886. -883. -86. -832. 418. 2169. 1374. 686. 341. 1313. 616. 261. -2434. -525. MONTH END STORAGE Of LAKE (DAM-3) YEAR OAN MAR FEB •55 5 215050. 223548. 2303S0. 1970 253992. 264238. 271012. • 971 306576. 307369. 308618. • 5-: 310196. 311417. 314073. '5-3 320943. 321859. 326027. ' 5-4 345000. 345000. 345000. '5-; 338836. 340820. 340535. ' 5~6 320032. 320839. 323431. ' J71 298922. 298117. 302792. ' 575 302800. 302719. 308044. ' 5-5 311202. 310457. 317196. 555 303455. 303786. 306538. 1981 308523. 310699. 314819. 305234. 306608. 308075. ' 555 1983 321779. 322548. 324096. ' 554 312004. 312434. 319248. 309143. 310368. 311174. ' 98! '545 308983. 309594. 314469. '55 = 320698. 321221. 324810. '557: 293669. 291249. 304567. APR 230350. 276109. 326058. 322966. 331510. 337109. 343290. 328900. 303043. 314154. 323156. 309237. 314721. 312329. 330063. 314048. 322303. 314593. 330975. 309667. MAY 232740. 289437. 327337. 331947. 330285. 345000. 345000. 325261. 307247. 317063. 324444. 307203. 316333. 321034. 330925. 312377. 324075. 324421. 327541. 299075. JUN 236066. 297605. 326781. 331907. 337266. 345000. 336814. 324639. 299810. 314808. 321887. 311035. 309456. 318922. 329078. 314773. 314044. 319878. 318243. 302824. JUL 236279. 289663. 328683. 329327. 336038. 341961. 330770. 318072. 297350. 306089. 317435. 309481. 305646. 324779. 331233. 304610. 306589. 324951. 314513. 300338. AUG 242740. 295283. 316575. 324311. 345000. 340024. 324145. 313491. 300072. 308664. 309570. 311967. 298860. 323312. 319011. 298709. 310264. 316648. 311906. 302425. SEP 249221. 301754. 309036. 320755. 343855. 336507. 319844. 307180. 300098. 313866. 305691. 309646. 299229. 320692. 317062. 306324. 308429. 318839. 306917. 300790. OCT 254849. 303508. 306610. 318236. 340772. 332731. 317377. 301575. 302967. 313698. 302204. 306770. 302487. 319717. 310888. 305368. 307141. 320175. 301057. 302106. NOV 254849. 303508. 307835. 319111. 343574. 334789. 318260. 300689. 302886. 312866. 302620. 304098. 302487. 320402. 311316. 306598. 307751. 320437. 298516. 301 589. DEC 255706. 304386. 309058. 320030. 345000. 336770. 319147. 299806. 302800. 312034. 303038. 306267. 303860. 321088. 311657. 307911. 308367. 320698. 296081. 301064. APR SCENARIO 2 - GROUNDWATER 3 0 DAM /MONTH S2L.0UT 4/20/90 Page 1 BUFFALO LAKE WATER BALANCE JAN 17/90 SCENARIO 2 - LOWER LEVEL GROUNDWATER (0 DAM"3/MO) END OF MONTH LAKE ELEVATION (M) YEAR JAN FEB MAR '969 - 7 9 530 779 630 779 710 1970 779 988 780 103 780 178 -q-i 730 636 780 645 780 658 1972 780 675 780 669 780 719 "9-3 -60 - 9 3 780 809 780 850 " 9-4 781 000 781 000 781 000 •9-5 -so 932 780 954 780 950 '976 780 723 780 732 780 760 1977 780 568 780 559 780 611 "9-6 -so 625 780 624 780 684 "974 780 715 780 707 780 783 " 55: 760 625 780 629 780 660 ' 95" -80 6S0 780 704 780 750 -9=2 -80 651 780 666 780 682 '963 780 833 780 841 780 859 "934 7S0 720 780 725 780 802 '956 -so 696 780 710 780 719 "986 7S0 690 780 697 780 751 '95" "60 619 -60 825 780 866 1988 -so 5'7 780 489 780 639 TOTAL PUMPING VOLUME (DAM"3) YEAR JAN FEB MAR " 559 0. 0. 0. "979 0. 0. 0. " 971 0. 0. 0. " 2-2 0. 0. 0. 572 0. 0. 0. - 474 0. 0. 0. " 5-5 0. 0. 0. "9-6 C. 0. 0. " 9-7 0. 0. 0. "973 0. 0. 0. "9-9 0. 0. 0. "950 0. 0. 0. 0. 0. 0. 1981 0. "562 0. 0. 0. "532 0. 0. "524 0. 0. 0. "585 0. 0. 0. 0. • 5:5 0. 0. 0. 0. 0. 1987 0. 0. 0. -583 APR 779 710 780 235 780 854 780 818 780 911 780 912 780 981 780 821 780 614 780 752 780 849 780 690 780 749 780 730 780 924 780 743 780 841 780 752 780 934 780 697 APR 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1976 '979 1960 1581 1932 1983 "984 1965 1986 1937 '988 JAN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. FEB 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAR 1941. 9235. 5076. 1830. 2680. 8118. 2612. 6346. 111. 290. 1185. 3370. 322. 65. 81. 430. 567. 5405. 85. 88. APR 4621. 3888. 0. 1628. 5757. 4057. 6438. 466. 88. 3761. 5106. 1501. 4591. 4754. 10257. 3907. 19798. 5438. 7848. 417. SEP 779.932 780.519 780.662 780.791 780.987 780.906 780.720 780.598 780.656 780.746 780.651 780.692 780.584 780.821 780.777 780.665 780.684 780.799 780.663 780.607 OCT 779.998 780.601 780.635 780.763 780.953 780.864 780.693 780.598 780.627 780.743 780.611 780.660 780.620 780.810 780.708 780.654 780.670 780.813 780.600 780.625 NOV 779.998 780.601 780.649 780.773 780.984 •780.887 780.703 780.588 780.626 780.734 780.616 780.630 780.620 780.817 780.712 780.668 780.677 780.816 780.571 780.619 DEC 780.008 780.611 780.663 780.783 781.000 780.909 780.713 780.578 780.625 780.725 780.621 780.654 780.635 780.825 780.716 780.682 780.683 780.819 780.544 780.613 SEP 5617. 5617. 0. OCT 5617. 5617. 0. NOV 0. DEC 0. 0. 0. AUG 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1620. 5617. 0. 0. 0. 5617. 0. 0. 5617. MAY 5617. 5617. JUN 5617. 5617. JUL 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1770. 5617. 0. 0. 0. 0. 5617. 0. 0. 0. 2997. 0. 0. 3486. 0. 0. 0. 4839. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1415. TOTAL SURFACE INFLOW INTO LAKE (DAM' 3) KEAR • 969 '970 •97". ". 972 '973 "974 '975 "976 '977 AUG 779.856 780.448 780.747 780.831 781 000 780 945 780 768 780 650 780 593 780 687 780 694 780 719 780 580 780 850 780 799 780 580 780 705 780 774 780 719 780 626 MAY JUN JUL 779 738 779 777 779.780 780 383 .780 473 780.385 780 868 780 861 780 883 780 917 780 917 780 888 780 897 780 975 780 961 781 000 781 000 780 966 781 000 780 909 780 842 780 781 780 774 780 701 780 661 780 592 780 563 780 782 780 757 780 658 780 862 780 833 780 783 780 666 780 709 780 691 780 767 780 689 780 646 780 826 780 802 780 867 780 934 780 913 780 937 780 724 780 750 780 636 780 861 780 748 780 664 780 862 780 811 780 868 780 895 780 790 780 748 780 583 780 624 780 604 5617. MAY 10407. 20195. 3422. 13217. 2022. 13484; 7721. 8518. 4735. 17720. 12169. 6672. 2719. 14034. 1944. 752. 4754. 3940. 2791. 1649. 0. 0. 0. 0. 0. 0. 3086. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 273. 4234. SEP 6897. 6359. 430. 1026. 3129. 358. 374. 2027. 5904. 1654.166. 1491. 5724. ' 2318. 36. 5972. 554. 482. 36. 342. OCT 6496. 5812. 117. 234. 1654. 176. 251. 5663. 192. 1114. 23. 531. 5803. 1078. 7. 619. 772. 795. 345. 4635. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. INCLUDE PUMPING VOLUME JUN 5659. 8108. 290. 1882. 2475. 407. 602. 996. 1978. 980. 365. 2227. 983. 1091. 899. 1716. 524. 1889. 427. 6457. JUL 6656. 8030. 964. 2348. 2390. 358. 1052. 674. 5721. 922. 466. 1762. 147. 2556. 3777. 81. 0. 781. 117. 4255. AUG 6363. 7196. 668. 1553. 2797. 576. 726. 781. 5773. 1159. 306. 2048. 3590". 1846. 1228. 3486. 528. 1267. 316. 6562. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S2L.0UT 4/20/90 Page 2 LAKE PRECIPITATION (DAM"3) YEAR JAN FEB MAR 1969 279. 8592. 5150. 1970 0. 10438. 0. 1971 2524. 1009. 0. 1972 1464. 1442. 1469. 1973 1242. 1031. 2146. 1974 2925. 2811. 27626. 1975 2393. 2093. 0. 1976 1202. 1019. 0. 1977 0. 0. 6588. 1978 313. 22. 5733. 1979 0. 0. 6581. 1980 527. 335. 0. 1981 2388. 2203. 5224. 1982 1498. 1601. 1736. 1983 994. 915. 2240. 1984 563. 753. 7742. 1985 1354. 1242. 1089. 1986 730. 724. 524. 1987 107. 637. 4087. 1988 0. 0. 15369. LAKE EVAPORATION (DAM~3) YEAR OAN FEB o -„„ ™ n,?' f,/ 97? 11/ l I079 11/ I • 973 11/ Vn/ l„l f? • ?975 11/ ' 1975 327. 109. 1 317. 212. 1977 894. 815. 1978 313. 105. 1979 842. 756. 1 104. 0. 105. 0. 1982 209. 105. 1983 215. 215. 1984 212. 317. 1 106. 0. 1 1° 106. 1 1° I" 1988 2443. 2451. MAR APR 0. 4882. 21562. 12046. 3642. 0. 0. 10132. 6230. 6205. 5068. 5217. 795. 3513. 430. 0. 0. 0. 3632. 11573. A P R 1<)fi 9 7 976 9 8 0 1 9 8 1 9 8 5 9 8 6 6 987 7 7 2 8 9 , 2 4 6 2 ' f f' ' oil ' 2897. 3754. 1970. 629. 955. 626. 1380. 316. 755. 1279. 847. 1061. 539. 1968. 3 8 6 2 3 6 4 6 4 4 6 2 1 ' ' 1 ' 3683. 5129. 6065. 3825. 4202. 4004. 5542. 4020. 4774. 9220. 8788. 5383. 5336. 6830. 3 6 7 3 3 9 6 5 4 7 1 6 3 9 9 1 1 9 4 8 MAY 0. 1647. 8075. 6335. 5893. 21942. 17973. 0. 8765. 0. 0. 876. 8024. 4028. 8972. 6407. 8301. 15938. 5167. 0. MAY ' ' 1° 7422. 12157. 9302. 15012. 11022. 9692. 9144. 9427. 10067. 8859. 11323. 9975. 11470. 11863. JUN 7762. 12305. 11471. 11126. 16651. 14523. 2375. 9767. 4239. 8776. 8140. 13605. 3599. 9385. 8873. 11279. 3652. 6828. 4943. 11265. JUN I ' 12107. 1 111163. 11384. 12444. 12053. 11099. 11980. 11555. 12631. 11653. 10591. 14345. 13341. 14789. 14010. SEP 84 93. 10294. 2243. 4858. 5703. 4832. 4640. 2847. 7404. 12284. 5925. 4498. 4907. 3588. 7609. 10833. 5724. 11271. 4151. 7442. OCT 2762. 5995. 2306. 515. 0. 49. 1813. 0. 877. 2432. 1233. 117. 1333. 2093. 0. 1555. 852. 4305. 0. 1324. NOV 1140. 1147. 2489. 1839. 3894. 3567. 2253. 449. 1480. 642. 1564. 0. 936. 1980. 1484. 1981. 1562. 1446. 0. 930. OEC 1428. 1406. 1865. 1460. 3058. 2741. 1626. 0. 699. 0. 632. 2926. 1914. 1124. 874. 1647. 940. 556. 0. 0. JUL AUG SEP " 8909. 13567. 10183 . H 1 °lO I ' 14333. 14113. 9977. 15S34. 13649. 8707. 13271. 12827. 9315. 12736. 12782. 9565. 13847. 11582. 7669. 14122. 12938. 8689. 13686. 13529. 10021. 13755. 13073. 8356. 12943. 13454. 10335. 13848. 12357. 8590. 13152. 14272. 9618. 14026. 14161. 9167. 15871. 14115. 8145. 14045. 13784. 9540. 15199. 12350. 9237. 15014. 13712. 9446. OCT 3630. 4435. 4872. 3292 . 4737. 4001. 4531. 5665. 3661. 3731. 4788. 3567. 3913. 4172. 6258. 3152. 2938. 3757. 6006. 4349. NOV 1140. 1147 . 1253. 956 . 1093. 1509. 1369 1345. 1562. 1485. 1143. 2704. 936. 1286. 1051. 734. 944. 1181. 2574. 1456 DEC 570. 521. 631. 534. 331. 760. 740 893. 731. 842. 208. 731. 522. 429. 529. 316. 316. 322 2466 533 JUL XT NOV JUL 5240. 0. 12834. 8265. 10685. 12437. 6175. 5494. 5553. 4355. 8706. 10398. 8938. 17192. 11510. 3656. 8319. 18391. 11304. 8968. 8 0 1 7 1 0 0 9 5 1 1 6 a 3 8 5 1 4 1 2 2 4 5 1 5 9 7 2 2 3 7 1 2 3 2 4 1 0 6 0 9 9 1 6 9 7 5 8 S 3 0 6 4 2 5 4 AUG 12026. 11990. 0. 6703. 20788. 11136. 5475. 7420. 8490. 14372. 5253. 13516. 3949. 9001. 653. 5600. 17303. 4092. 9390. 9052. 9 2 8 8 8 8 2 8 9 3 2 3 5 1 3 3 2 9 2 8 4 9 4 8 0 OUTFLOW FROM LAKE (DAM*3) T«S J A N F E B A P R M A Y J U N lltl °- °- °- 0- 0. 0. 9 7 0. »• °°0. 02701. 0. 00°o0. o»• o">• 0. »• °0. 0. 0. 35630. 0. 00°o0. o00. 00. 0. o- o0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o00. 0. 0. 0 0 o0. 0. 0. 19949. 16561. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 0. 0. 0. 0. 2389. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0 0. 0. 0. 0. 197 ? 1 °- 1 2 o- °- 1 9 7 3 1974 1 1 9 7 5 976 1 9 7 7 1 9 7 8 2814. °°°°- 1 9 7 9 1 9 8 0 1 9 8 1 °»• 1 9 8 2 1 9 8 3 °- 1 9 8 4 1 9 8 5 1 986 1 9 8 7 1988 c 0. 0. 0. 0. 0 0. 0. 0. 0 0. 0 0. 0 0 0 0 AUG 0. S: n 0 0. 0. 0 5978 0 0. 0 0 0 0 0 0 0 0 0 0 n 0 n / / 5 0. SEP 0. 0. 0. 0 0 0 0' 0 0 0 0 0 0 0 0 0 0 / 0 0. 0. 0. 0 0 0 0 0' 0 0 0 0' 0 0 0 B 0 0a. 0. 0 0 0 0 0 0 0 0 a 0 n a n „' n' B DEC 0 6 0 0 130o' 0 0 fl n n 0 n a n °/- S 8- « °n 2- °- 0. 0. S2L.0UT 4/20/90 Pa e 3 9 STORAGE CHANGE IN LAKE (DAM-31 YEAR JAN FEB MAR 1969 0 8498. 6802. 1970 -1714 10246. 6773. 1971 2210. 800. 1214. 1972 1148 1232. 2664. 1973 921. 924. 4181. 1974 0. 0. 0. 1975 2066. 1984. -285. 1976 885. 808. 2592. 1977 -894. -815. 4729. 1978 0. -82. 5394. 1979 -842. -756. 6812. 1980 423. 335. 2744. 1981 2283. 2203. 4166. 1982 1392. 1393. 1485. 1983 700. 779. 1567. 1984 351. 436. 6893. 1985 1249. 1242. 810. 1986 625. 618. 4869. 1987 0. 530. 3633. 1988 -.2443. -2451. 13488. APR MAY 0. 5097. 17597. 8957. 5481. -7891. 2755. 5469. 253. 6142. 5972. 2714. -155. 4247. 5912. -5313. 11010. 55. 6144. 5160. 2390. 13328. 1259. 8943. -1253. 7891. 1710. -3639. 4197. 2708. 1147. -2144. 1599. 8635. 849. -1701. 1733. 9903. -3512. -10214. JUN 3326 8169 -564 -57 7019 0 -8186 -621 -6228 -2298 -2594 3852 -6973 -2155 -1881 2404 -10170 -4624 -9419 3712 JUL 213. -7942. 1910. -2622. -1258. -3039. -6044. -6568. -2573. -8846. -4514. -1595. -3858. 5901. 2134. -10289. -7553. 5128. -3778. -1791. A„G 6461. 5620. -12222. -5073. 3495. -1938. -6626. -4580. 2681. 2593. -7969. 2492. -5915. -1510. -12391. -5075. 3717. -8425. -2644. . 1902. SEP 6482 6471 -7611 -3596 -1145 -3517 -4301 -4692 5639 5249 -3929 -2368 296 -2684 -1973 7638 -1867 2212 -5051 -1663 0C 5627. 7372. -2449. -2543. -3083. -3775. -2467. -2. -2592. -185. -3532. -2919. 3223. -1001. -6251. -978. -1315. 1343. -5662. 1610. 0. 0. 1236. 882. 2802. 2058. 884. -897. -82. -843. 42'. -2704. 0. 654. 433. 1247. 618. 265. -2574. -525. DEC 858. 885. 1234. 526. 1426. 1981. 666. -893. -87. -842. 424. 2195. 1392. 695. 346. 1331. 62 4. 265. -2466. -533. MONTH END STORAGE OF LAKE (DAM 3) YEAR JAN FEB MAR 1969 215050. 223548. 230350. 1970 253992. 264238. 271012. 1971 312221. 313021. 314235. 1972 315776. 317008. 319671. 1973 326412. 327336. 331517. 1974 345000. 345000. 345000. 1975 338836. 340820. 340535. 1976 320032. 320839. 323431. 1977 306113. 305299. 310027. 1978 311237. 311155. 316548. 1979 319384. 318629. 325440. 1980 311287. 311622. 314366. 1981 316174. 318377. 322543. 1982 313545. 314938. 316423. 1983 329944. 330723. 332290. 1984 319819. 320254. 327147. 1985 317660. 318902. 319712. 1986 317134. 317753. 322621. 1987 328743. 329273. 332905. 1988 301502. 299051. 312539. APR 230350. 276109. 331833. 328629. 336998. 337109. 343290. 328900. 310280. 322690. 331412. 317081. 322388. 320670. 338202. 321834. 330722. 322676. 339049. 317699. MAY 232740. 289437. 333092. 337572. 335745. 345000. 345000. 325261. 314478. 325399. 332559. 314937. 323987. 329305. 339050. 320133. 332455. 332579. 335537. 307485. JUN 236066 297605 332528 337515 342764 345000 336814 324639 308250 323101 329965 318789 317014 327150 337169 322537 322285 327955 326119 311198 JUL 236279. 289663. 334438. 334893. 341505. 341961. 330770. 318072. 305678. 314255. 325451. 317194. 313156. 333051. 339303. 312248. 314733. 333082. 322341. 309407. AUG 242740. 295283. 322217. 329820. 345000. 340024. 324145. 313491. 308359. 316848. 317481. 319686. 307242. 331541. 326913. 307174. 318449. 324657. 319697. 311309. SEP 249221 301754 314606 326225 343855 336507 319844 308800 313998 322097 313552 317318 307537 328857 324940 314812 316583 326870 314646 309646 OCT 254849. 309125. 312157. 323682. 340772. 332731. 317377. 308798. 311406. 321912. 310020. 314399. 310761. 327856. 318689. 313834. 315268. 328213. 308985. 311256. NOV 254849. 309125. 313394. 324564. 343574. 334789. 318260. 307901. 311324. 321069. 310441. 311695. 310761. 328549. 319122. 315081. 315886. 328478. 306411. 310731. DEC 255706. 310011. 314628. 325491. 345000. 336770. 319147. 307007. 311237. 320227. 310865. 313890. 312153. 329244. 319467. 316411. 316510. 328743. 303945. 310198. T A 3 SCENARIO 3 - GROUNDWATER = 0 DAM /MONTH S3L.0UT 4/20/90 Page 1 BUFFALO LAKE WATER BALANCE JAN 17/90 SCENARIO 3 - LOWER LEVEL GROUNDWATER (0 DAM~3/M0) END OF MONTH LAKE ELEVATION (M) YEAR JAN FEB MAR 1969 779.530 779 630 779.710 1970 779.988 780 103 780.178 1971 780.636 780 645 780.658 1972 780.766 780 780 780.810 1973 780.874 780 884 780.931 1974 781.000 781 000 781.000 1975 780.932 780 954 780.950 1976 780.738 780 747 780.776 1977 780.661 780 652 780.706 1978 780.720 780 719 780.780 1979 780.808 780 799 780.876 1980 780.714 780 718 780.749 1981 780.767 780 792 780.838 1982 780.743 780 759 780.776 1983 780.924 780 933 780.950 1984 780.781 780 786 780.864 1985 780.782 780 796 780.805 1986 780.772 780 779 780.833 1987 780.900 780 906 780. 947 1988 780.613 780 586 780.738 TOTAL PUMPING VOLUME (DAM 3) YEAR JAN FEB MAR "969 0. 0. 0. 1970 0. 0. 0. 1971 0. 0. 0. 1972 0. 0. 0. 1973 0. 0. 0. 1974 0. 0. 0. 1975 0. 0. 0. 1976 0. 0. 0. 1977 0. 0. 0. 1978 0. 0. 0. 1979 0. 0. 0. 1980 0. 0. 0. 1981 0. 0. 0. 1982 0. 0. 0. 1983 0. 0. 0. 1984 0. 0. 0. 1985 0. 0. 0. 1986 0. 0. 0. 1987 0. 0. 0. 7 988 0. 0. 0. APR 779.710 780.235 780.854 780.910 780.992 780.912 780.981 780.837 780.708 780.849 780.942 780.779 780.836 780.823 781.000 780.804 780.926 780.833 781.000 780.796 MAY 779.738 780.383 780.868 781.000 780.977 781.000 781.000 780.796 780.755 780.876 780.953 780.754 780.854 780.918 781.000 780.785 780.945 780.944 780.960 780.681 JUN 779.777 780.473 780.861 780.999 781.000 781.000 780.909 780.789 780.689 780.850 780.924 780.797 780.775 780.894 780.979 780.811 780.830 780.892 780.855 780.722 JUL 779.780 780.385 780.883 780.969 780.986 780.966 780.842 780.716 780.659 780.751 780.873 780.779 780.732 780.960 781.000 780.698 780.745 780.949 780.812 780.704 AUG 779.856 780.448 780.747 780.912 781.000 780.945 780.768 780.708 780.689 780.780 780.784 780.807 780.674 780.942 780.861 780.665 780.787 780.854 780.783 780.725- SEP 779.932 780.519 780.690 780.872 780.987 780.906 780.720 780.693 780.751 780.838 780.739 780.780 780.677 780.912' 780.839 780.750 780.766 780.879 780.726 780.706 OCT 779.998 780.601 780.725 780.843 780.953 780.864 780.709 780.692 780.722 780.836 780.700 780,747 780.712 780.900 780.769 780.739 780.751 780.894 780.698 780.726 NOV 779 998 780 601 780 739 780 853 780 984 780 887 780 719 780 682 780 721 780 827 780 705 780 716 780 712 780 908 780 774 780 753 780 758 780 897 780 668 780 720 DEC 780.008 780.611 780.753 780.863 781.000 780.909 780.729 780.672 780.720 780.817 780.710 780.741 780.728 780.916 780.778 780.768 780.765 780.900 780.641 780.714 APR 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAY 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1520. JUN 5617. 5617. 0. 0. 0. 0. 0. 0. 2192. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5617. JUL 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 195. 0. 0. 0. 3351. AUG 5617. 5617. 0. 0. 0. 0. 0. 3837. 5617. 0. 0. 0. 3848. 0. 0. 5617. 0. 0. 0. 4886. SEP 5617. 5617. 2505. 0. 0. 0. 0. 4999. 5617. 0. OCT 5617. 5617. 5617. 0. 0. 0. 1419. 5617. 0. DEC 0. 0. 0. 0. 0. 5617. 0. 0. 5617. 0. 0. 0. 0. 58. 0. 5617. 0. 0. 0. 0. 0. 3420. 4393. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. APR 4621. 3888. 0. 1628. 5757. 4057. 6438. 466. 88. 3761. 5106. 1501. 4591. 4754. 10257. 3907. 19798. 5438. 7848. 417. MAY 10407. 20195. 3422. 13217. 2022. 13484. 7721. 8518. 4735. 17720. 12169. 6672. 2719. 14034. 1944. 752. 4754. 3940. 2791. 1754. JAN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. FEB 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAR 1941. 9235. 5076. 1830. 2680. 8118. 2612. 6346. 111. 290. 1185. 3370. 322. 65. 81. 430. 567. 5405. 85. 88. SEP 6897. 6359. 2935. 1026. 3129. 358. 374. 5406. 5904. 1654. 166. 1491. 5724. 2318. 36. 5972. 554. 482. 36. 342. OCT 6496. 5812. 5734. 234. 1654. 176. 1670. 5663. 192. 1114. 81. 531. 5803. 1078. 7. 619. 772. 795. 3492. 4794. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - INCLUDE PUMPING VOLUME TOTAL SURFACE INFLOW INTO LAKE (DAM-3) YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 0. 0. JUN 5659. 8108. 290. 1882. 2475. 407. 602. 996. 2400. 980. 365. 2227. 983. 1091. 899. 1716. 524. 1889. 427. 6457. JUL 6656. 8030. 964. 2348. 2390. 358. 1052. 674. 5721. 922. 466. 1762. 147. 2556. 3777. 276. 0. 781. 117. 4520. AUG 6363. 7196. 668. 1553. 2797. 576. 726. 4618. 5773. 1159. 306. 2048. 4441. 1846. 1228. 5617. 528. 1267. 316. 6609. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S3L.0UT 4/20/90 Page 2 LAKE PRECIPITATION (DAM"3) YEAR OAN FEB MAR 1969 279. 8592. 5150 1970 0. 10438. 0 1971 2524. 1009. 0 1972 1483. 1461. 1488 1973 1256. 1043. 2171 1974 2925. 2811. 27626 1975 2393. 2093. 0 1976 1205. 1021. 0 1977 0. 6677 0. 1978 317. 23. 5811 1979 0. 6668 0. 1980 534. 339. 0 1981 2418. 2231. 5289 1982 1622. 1518. 1759 1983 927. 1006. 2269 1984 568. 760. 7810 1985 1371. 1257. 1103 1986 739. 733. 531 1987 108. 645. 4133 1988 0. 0. 15585 0. 3673. 11736. LAKE EVAPORATION (DAM-3) YEAR JAN FEB 1969 279. 94. 1970 1714. 192. 1971 314. 209. 1972 320. 213. 1973 324. 108. 1974 111. 110. 1975 327. 109. 1976 318. 212. 1977 906. 826. 1978 317. 106. 1979 853. 765. 1980 106. 0. 1981 106. 0. 1982 212. 107. 1983 218. 218. 1984 214. 320. 1985 107. 0. 1986 107. 107. 1987 108. 108. 1988 2477. 2486. MAR 289 2462. 3862. 643. 653. 114. 2897. 3763. 1997. 638. 967. 634. 1397. 321. 764. 1291. 857. 1073. 545. 1996. MAR OUTFLOW FROM LAKE (DAM-3) YEAR JAN FEB 1969 0. 0. 1970 0. 0. 1971 0. 0. 1972 0. 0. 1973 0. 0. 1974 2814. 2701. 1975 0. 0. 1976 0. 0. 1977 0. 0. 1978 0. 0. 1979 0. 0. 1980 0. 0. 1981 0. 0. 1982 0. 0. 1983 0. 0. 1984 0. 0. 1985 0. 0. 1986 0. 0. 1987 0. 0. 1988 0. 0. 0. 0. 0. 0. 0. 35630. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. JUN 7762. 12305. 11471. 11252. 16835. 14523. 2375. 9788. 4296. 8892. 8244. 13776. 3644. 9506. 8954. 11376. 3694. 6905. 4988. 11425. JUL 5240. 0. 12834. 8358. 10721. 12437. 6175. 5506. 5632. 4412. 8817. 10529. 9048. 17414. 11614. 3687. 8416. 18600. 11407. 9094. AUG 12026. 11990. 0. 6779. 20859. 11136. 5475. 7436. 8608. 14562. 5320. 13685. 3998. 9116. 659. 5650. 17505. 4138. 9475. 9182. SEP 8493. 10294. 2243. 4913. 5703. 4832. 4640. 2870. 7506. 12446. 6000. 4554. 4973. 3634. 7675. 10966. 5791. 11398. 4188. 7548. OCT 2762. 5995. 2315. 521. 0. 49. 1813. 0. 889. 2464. 1249. 119. 1351. 2119. 0. 1574. 861. 4354. 0. 1343. NOV 1140. 1147. 2521. 1859. 3894. 3567. 2258. 455. 15O0. 650. 1584. 0. 949. 2005. 1497. 2006. 1580. 1462. 0. 944. DEC 1428. 1406. 1889. 1476. 3058. 2741. 1630. 0. 653. 0. 640. 2962. 1940. 1139. 882. 1667. 951. 593. 0. 0. APR 4621. 3673. 3965. 4777. 3962. 11948. 3683. 5141. 6147. 3877. 4257. 4055. 5611. 4073. 4835. 9301. 8894. 5445. 5396. 6926. MAY 8017. 8514. 10237. 10746. 9270. 7586. 7422. 12184. 9428. 15216. 11165. 9815. 9256. 9551. 10172. 8936. 11456. 10089. 11574. 12030. JUN 10095. 12245. 12324. 13213. 12241. 12541. 11163. 11409. 12611. 12213. 11241. 12131. 11697. 12794. 11759. 10683. 14513. 13493. 14923. 14209. JUL 11683. 15972. 11888. 13385. 14382. 15834. 13271. 12764. 14042. 14309. 13860. 13927. 13102. 14026. 13272. 14146. 16056. 14204. 15337. 15225. AUG 11928. 13567. 12890. 13480. 14161. 13649. 12827. 12809. 11743. 13109. 13701. 13236. 13619. 12515. 14396. 14287. 14279. 13940. 12462. 13909. SEP 8909. 10183. 10284. 9586. 9977. 8707. 9315. 9645. 7775. 8804. 10148. 8460. 10475. 8699. 9702. 9279. 8240. 9648. 9321. 9582. OCT NOV 3630. 4435. 4891. 3329. 4737. 4001. 4531. 5743. 3712. 3780. 4849. 3611. 3965. 4225. 6312. 3191. 2972. 3799. 6061. 4412. 1140. 1147. 1269. 967. 1093. 1509. 1372. 1364. 1583. 1504. 1157. 2738. 949. 1302. 1060. 743. 955. 1194. 2610. 1477. DEC 570. 521. 639. 540. 331. 760. 742. 906. 741. 853. 211. 740. 529. 435. 533. 320. 320. 325. 2500. 541. APR MAY 0. JUN JUL AUG 0. 0. SEP OCT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. APR 0. 4882. 21562. 12201. 3683. 0. 0. 10154. 6314. 6290. 5134. 5283. 805. 3560. 435. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1380. 0. 0. 0. 1338. 0. MAY 0. 1647. 8075. 6417. 5959. 21942. 17973. 0. 8883. 0. 0. 888. 8122. 4081. 9065. 6462. 8399. 16120. 5214. 0. 0. 797. 0. 19949. 16561. 0. 0. 0. 0. 0. 0. 0. 837. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5024. 2389. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8225. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 213. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 1300. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S3L.0UT 4/20/90 STORAGE CHANGE IN LAKE (DAM'S) YEAR JAN FEB MAR 1969 0. 8498. 6802. 1970 -1714. 10246. 6773. 1971 2210. 800. 1214. 1972 1163. 1248. 2675. 1973 932. 935. 4198. 1974 0. 0. 0. 1975 2066. 1984. -285. 1976 887. 809. 2583. 1977 -906. -826. 4791. 1978 0. -83. 5463. 1979 -854. -765. 6885. 1980 428. 339. 2736. 1981 2312. 2231. 4214. 1982 1411. 1411. 1504. 1983 709. 789. 1586. 1984 354. 439. 6949. 1985 1264. 1257. 813. 1986 632. 626. 4862. 1987 0. 536. 3673. 1988 -2477. -2486. 13677. Page 3 APR 0. 5097. 17597. 9052. 5477. -7891. 2755. 5480. 256. 6175. 5983. 2730. -214. 4241. 4477. -5394. 10904. -7. 4786. 5226. MAY 2390. 13328. 1259. 8092. -1289. 7891. 1710. -3666. 4190. 2504. 1004. -2256. 1585. 8564. 0. -1722. 1697. 9972. -3569. -10276. JUN 3326, 8169. -564. -79. 2046. 0. -8186. -625. -5915. -2341. -2632. 3872. -7070. -2196. -1907. 2410. -10294. -4699. -9508. 3673. JUL 213. -7942. 1910. -2679. -1271. -3039. -6044. -6583. -2689. -8975. -4577. -1637. -3907. 5944. 1907. -10183. -7641. 5177. -3813. -1610. AUG 6461. 5620. -12222. -5148. 1271. -1938. -6626. -755. 2638. 2612. -8075. 2497. -5181. -1553. -12509. -3020. 3754. -8535. -2671. 1882. SEP 6482. 6471. -5106. -3648. -1145. -3517. -4301. -1368. 5636. 5296. -3982. -2416. 222. -2748. -1991. 7658. -1895. 2232. -5097. -1691. OCT 5627. 7372. 3158. -2574. -3083. -3775. -1048. -80. -2630. -202. -3519. -2962. 3189. -1028. -6305. -997. -1339. 1349. -2569. 1725. 0. 0. 1252. 892. 2802. 2058. 886. -909. -83. -854. 427. -2738. 0. 703. 437. 1262. 625. 268. -2610. -533. DEC 858. 885. 1250. 937. 1426. 1981. 888. -906. -88. -854. 429. 2222. 1411. 704. 349. 1347. 631. 268. -2501. -541. MONTH END STORAGE OF LAKE (DAM-3) YEAR JAN FEB MAR APR 1969 215050. 223548. 230350. 230350. 1970 253992. 264238. 271012. 276109. 312221. 313021. 314235. 331833. 1971 1972 323934. 325182. 327857. 336909. 1973 333634. 334568. 338766. 344244. 1974 345000. 345000. 345000. 337109. 1975 338836. 340820. 340535. 343290. 1976 321457. 322267. 324850. 330330. 1977 314532. 313706. 318497. 318753. 1976 319811. 319727. 325191. 331365. 1979 327699. 326933. 333819. 339801. 1980 319305. 319644. 322380. 325110. 1981 324006. 326236. 330450. 330236. 1982 321896. 323307. 324810. 329051. 1983 338148. 338937. 340523. 345000. 1984 325335. 325774. 332723. 327330. "985 325349. 326606. 327419. 338323. 1986 324492. 325118. 329981. 329973. 1987 336005. 336541. 340214. 345000. •988 310186. 307700. 321377. 326604. MAY 232740. 289437. 333092. 345000. 342954. 345000. 345000. 326664. 322943. 333870. 340805. 322854. 331821. 337615. 345000. 325608. 340020. 339945. 341431, 316328. JUN 236066. 297605. 332528. 344921. 345000. 345000. 336814. 326039. 317028. 331528. 338173. 326726. 324751. 335419. 343093. 328018. 329725. 335246. 331923. 320001. JUL 236279. 289663. 334438. 342242. 343730. 341961. 330770. 319455. 314339. 322554. 333596. 325089. 320844. 341362. 345000. 317835. 322085. 340423. 328110. 318391. AUG 242740. 295283. 322217. 337095. 345000. 340024. 324145. 318700. 316976. 325166. 325522. 327586. 315663. 339809. 332491. 314815. 325838. 331888. 325439. 320273. SEP 249221. 301754. 317111. 333447. 343855. 336507. 319844. 317332. 322612. 330462. 321540. 325171. 315886. 337061. 330500. 322474. 323944. 334120. 320342. 318582. OCT 254849. 309125. 320269. 330873. 340772. 332731. 318796. 317253. 319982. 330259. 318021. 322209. 319074. 336033. 324195. 321476. 322605. 335469. 317774. 320307. NOV 254849. 309125. 321521. 331765. 343574. 334789. 319682. 316344. 319899. 329406. 318448. 319472. 319074. 336736. 324632. 322739. 323230. 335737. 315164. 319774. DEC 255706. 310011. 322771. 332702. 345000. 336770. 320570. 315438. 319811. 328552. 318877. 321694. 320485. 337440. 324980. 324085. 323861. 336005. 312663. 319233. NOV SCENARIO I - GROUNDWATER = 521 DAM7MONTH SIU.OUT 4/20/90 Page 1 BUFFALO LAKE WATER BALANCE JAN 17/90 SCENARIO 1 - UPPER LEVEL GROUNDWATER (521 DAM"3/M0) END OF MONTH LAKE ELEVATION (M) YEAR JAN FEB MAR 1969 779.530 779 630 779.710 1970 779.990 780 105 780.180 1971 780.574 780 583 780.597 1972 780.613 780 626 780.656 780.731 780 741 780.787 1973 1974 781.000 781 000 781.000 1975 780.935 780 957 780.955 1976780.727 780 737 780.766 1977 780.499 780 491 780.544 1978 780.526 780 525 780.585 1979 780.625 780 617 780.692 1980 780.544 780 548 780.579 1981 780.605 780 629 780.675 1982 780.564 780 580 780.596 1983 780.751 780 760 780. 777 1964 780.645 780 650 780.726 "985 780.607 780 621 780.630 1986 780.607 780 614 780.668 1987 780.739 780 745 780.785 1388 780.439 780 413 780.561 TOTAL PUMPING VOLUME (DAM •3) YEAR JAN FEB MAR 0. 0. 0. 1969 '970 0. 0. 0. 1971 0. 0. 0. 1972 0. 0. 0. 1973 0. 0. 0. 1974 0. 0. 0. 1975 0. 0. 0. 1976 0. 0. 0. 1977 0. 0. 0. 1978 0. 0. 0. 1979 0. 0. 0. 0. 0. 1980 0. 1981 0. 0. 0. 1982 0. 0. 0. 1983 0. 0. 0. 0. 0. 1984 0. 1985 0. 0. 0. -:966 0. 0. 0. 0. 0. 0. 1987 0. 1988 0. 0. APR 779.710 780.237 780.790 780.754 780.848 780.913 780.986 780.828 780.547 780.653 780.759 780.609 780.675 780.644 780.844 780.669 780.753 780.669 780.853 780.618 MAY 779.739 780.385 780.804 780.854 780.834 781.000 781.000 780.788 780.594 780.686 780.773 780.587 780.693 780.741 780.854 780.650 780.773 780.779 780.815 780.495 JUN 779.779 780.476 780.798 780.853 780.912 781.000 780.910 780.781 780.507 780.661 780.745 780.630 780.617 780.717 780.833 780.677 780.662 780.728 780.712 780.537 JUL 779.781 780.387 780.819 780.825 780.898 780.967 780.843 780.709 780.475 780.565 780.696 780.613 780.575 780.783 780.858 780.564 780.579 780.785 780.671 780.503 AUG 779.858 780.450 780.684 780.769 781.000 780.946' 780.770 780.658 780.506 780.594 780.609 780.641 780.492 780.767 780.722 780.490 780.620 780.693 780.642 780.528 SEP 779.934 780.521 780. 601 780.729 780.987 780.907 780.723 780.589 780.507 780.652 780.567 780.6i5 780.496 780.738 780.700 780.575 780.600 780.717 780. 586 780.510 APR MAY 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 439. JUN 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5617. JUL 5617. 5617. 0. 0. 0. 0. 0. 0. 5179. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1749. AUG 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 1305. 0. 0. 1775. 0. D. 0. 5116. SEP 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 5617. 0. 0. 0. 0. OCT 5617. 0. 0. 0. 0. 0. 0. 0. 4220. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 3735. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SEP 6897. 6359. 430. 1026. 3129. 358. 374. 407. 287. 1654. 166. 1491. 5724. 2318. 36. 5972. 554. 482. 36. 342. OCT 6496. 195. 117. 234. 1654. 176. 251. 46. 4412. 1114. 23. 531. 5803. 1078. 7. 619. 772. 795. 72. 4136. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 0. 0. D. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. JAN FEB 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAR 1941. 9235. 5076. 1830. 2680. 8118. 2612. 6346. 111. 290. 1185. 3370. 322. 65. 81. 430. 567. 5405. 85. 88. APR 4621. 3888. 0. 1628. 5757. 4057. 6438. 466. 88. 3761. 5106. 1501. 4591. 4754. 10257. 3907. 19798. 5438. 7848. 417. DEC 780.010 780.550 780.600 780.721 781.000 780.911 780.717 780.509 780.525 780.633 780.538 780.579 780.549 780.743 780.641 780.593 780.600 780.738 780.466 780.511 - INCLUDE PUMPING VOLUME TOTAL SURFACE INFLOW INTO LAKE (DAM-3) YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 I960 1981 1982 1983 1984 1985 1986 1987 1988 OCT NOV 780.001 780 001 780.541 780 541 780.573 780 587 780.701 780 711 780.953 780 984 780.866 780 889 780.696 780 706 780.527 780 518 780.526 780 526 780.651 780 642 780.528 780 533 780.584 780 555 780.533 780 533 780.727 780 735 780.632 780 637 780.564 780 578 780.586 780 593 780.732 780 735 780.521 780 493 780.522 780 517 MAY 10407. 20195. 3422. 13217. 2022. 13484. 7721. 8518. 4735. 17720. 12169. 6672. 2719. 14034. 1944. 752. 47 54. 3940. 2791. 673. JUN 5659. 8108. 290. 1882. 2475. 407. 602. 996. 208. 980. 365. 2227. 983. 1091. 899. 1716. 524. 1889. 427. 6457. JUL 6656. 8030. 964. 2348. 2390. 358. 1052. 674. 5283. 922. 466. 1762. 147. 2556. 3777. 81. 0. 781. 117. 2918. AUG 6363. 7196. 668. 1553. 2797. 576. 726. 781. 5773. 1159. 306. 2048. 1898. 1846. 1228. 1775. 528. 1267. 316. 6839. Page 2 LAKE PRECIPITATION (DAM-3) YEAR JAN FEB MAR 1969 0. 8071. 4629 1970 0. 9921. 0 1971 1964. 462. 0 1972 914. 894. 921 1973 700. 492. 1597 1974 2400. 2289. 27107 1975 1916. 1615. 0 1976 736. 553. 0 1977 0. 0. 6057 1978 0. 0. 5172 1979 0. 0. 6016 1980 37. 0. 0. 1981 1879. 1694. 4683 1982 1083. 982. 1217. 1983 407. 486. 1718. 1984 58. 246. 7161. 1985 829. 718. 568. 1986 213. 207. 10. 1987 0. 123. 3534. 1988 0. 0. 14682. 0. 9671. 5701. 5636. 4519. 4672. 301. 2972. 0. 0. 0. 0. 3083. 10924. LAKE EVAPORATION (DAM-3) YEAR JAN FEB 1969 521. 94. 1970 2241. 192. 1971 311. 207. 1972 313. 209. 1973 318. 106. 1974 111. 110. 1975 327. 109. 1976 317. 212. 1977 1352. 1273. 1978 479. 560. 1979 1312. 1227. 1980 103. 152. 1981 104. 0. 1982 206. 104. 1983 213. 213. 1984 210. 314. 1985 104. 0. 1986 104. 104. 1987 507. 106. 1988 2926. 2936. MAR 289. 2990. 4364. 629. 640. 114. 3378. 4225. 1951. 620. 943. 1102. 1365. 312. 746. 1266. 836. 1048. 533. 1946. MAR 0. 0. OUTFLOW FROM LAKE (DAM-3) YEAR OAN FEB 1969 0. 0. 1970 0. 0. 1971 0. 0. 1972 0. 0. 1973 0. 0. 1974 2810. 2700. 1975 0. 0. 1976 0. 0. 1977 0. 0. 1978 0. 0. 1979 0. 0. 1980 0. 0. 1981 0. 0. 1982 0. 0. 1983 0. 0. 1984 0. 0. 1985 0. 0. 1986 0. 0. 1987 0. 0. 1988 0. 0. 0. 0. 0. 35632. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. APR 0. 4363. 20836. 11404. 3079. MAY 0. 1131. 7464. 5744. 5312. 21455. 17504. 0. 8213. 0. 382. 7455. 3480. 8373. 5843. 7689. 15245. 4602. 0. OUN 7295. 11790. 10840. 10496.. 15980. 14035. 1898. 9309. 3730. 8176. 7557. 12969. 3077. 8774. 8278. 10664. 3101. 6238. 4384. 10615. JUL 4762. 0. 12193. 7665. 10063. 11957. 5707. 5031. 5021. 3816. 8118. 9796. 8364. 16494. 10887. 3118. 7716. 17675. 10677. 8338. AUG 11546. 11474. 0. 6118. 20083. 10658. 5009. 6963. 7913. 13703. 4709. 12883. 3425. 8397. 148. 5047. 16589. 3537. 8781. 8401. SEP 7996. 9763. 1699. 4289. 5175. 4354. 4175. 2384. 6836. 11639. 5374. 3963. 4360. 3050. 7034. 10193. 5146. 10638. 3598. 6812. APR 5142. 3674. 3930. 4674. 3884. 12452. 4163. 5133. 6005. 3771. 4149. 3957. 5483. 3970. 4793. 9624. 9184. 5830. 5276. 6753. MAY 8479. 8517. 10147. 10514. 9089. 7586. 7427. 12639. 9213. 15284. 11367. 9581. 9048. 9312. 9956. 8766. 11184. 9858. 11343. 12242. JUN 10098. 12249. 12216. 12950. 12002. 12541. 11163. 11395. 12326. 11890. 10963. 11845. 11435. 12481. 11525. 10481. 14171. 13187. 14626. 13831. JUL 11688. 16497. 11783. 13119. 14209. 15834. 13272. 12749. 13678. 13933. 13518. 13601. 12810. 13684. 13008. 13880. 15679. 13883. 15032. 14824. AUG 11935. 13571. 13305. 13213. 13991. 13650. 12829. 12796. 11434. 12765. 13364. 12927. 13317. 12212. 14116. 14015. 13944. 13626. 12215. 13511. APR MAY JUN JUL 0. 0. 0. 0. 0. 19999. 17034. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2422. 0. 0. 0. AUG 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 241. 0. 0. 0. 0. 1348. OEC 904. 856. 1312. 916. 2532. 2263. 1160. 0. 155. 0. 0. 1027. 334. 3748. 0. 779. 980. 152. 1063. 0. 428. 1460. 972. 1449. 1035. 922. 0. 386. SEP 8915. 10186. 10193. 9397. 9977. 8708. 9317. 9577. 7573. B574. 9899. 8264. 10202. 8490. 9514. 9048. 8047. 9431. 9136. 9314. OCT 3633. 4437. 4829. 3280. 5261. 4429. 4532. 6123. 3584. 3682. 4731. 3895. 3863. 4124. 6687. 3112. 2903. 3714. 6448. 4288. NOV 1141. 1137. 1242. 948. 1093. 1510. 1370. 1352. 1540. 1465. 1129. 3158. 925. 1271. 1039. 725. 933. 1167. 3053. 1434. oec 571. 516. 625. 529. 331. 760. 740. 1351. 720. 1312. 206. 723. 516. 425. 523. 312. 313. 318. 2949. 1058. SEP OCT NOV DEC 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NOV 615. 598. 1932. 1293. 3371. 3092. 1788. 383. 1917. 737. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OCT 2249. 5457. 1756. 0. 826. 1573. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 141. 2411. 1393. 614. 366. 1117. 420. 73. 0. 0. 1283. Q 0. n oooooooooooo* 4/20/90 oooooooooooo SIU.OUT S1U.0UT 4/20/90 Pag* 3 STORAGE CHANGE IN LAKE (DAM*3) EM JAN FEB MAR 56 9 0. 8498. 6802. 970 -1720. 10250. 6766. 971 2174. 776. 1233. »7J 1122. 1206. 2643. S-3 903. 907. 4158. 174 0. 0. 0. 2110. 2027. -245. 57J 940. 862. 2643. 5" -831. -752. 4738. 42. -40. 5363. -791. -706. 6780. 455. 369. 2769. Ml 2296. 2215. 4161. 1398. 1398. 1491. 565 -'6. 1574. "94. 964 370. 453. 6846. ies 1245. 1239. 820. 624. 4868. w 567 14. 539. 3607. MB -240S. -2415. 13345. APR 0. 5098. 17427. 8878. 5473. -7874. 2796. 5525. 304. 6148. 5998. 2737. -70. 4277. 5985. -5196. 11135. 129. 6176. S109. JUN 3377 8170 -564 -51 6974 0 -8142 -570 -7867 -2214 -2520 3872 -6854 -2095 -1827 2420 -10025 -4539 -9293 3762 JUL 250. -7946. 1895. -2585. -1235. -2998. -5992. -6523. -2852. -8673. -4414. -1521. -3778. 5887. 2177. -10160. -7442. 5094. -3717. -3047. AUG 6495. 5620. -12116. -5020. 9169. -1895. -6573. -4532. 2773. 2618. -7829. 2524. -7473. -1449. -12219. -6672. 3694. -8301. -2597. 2250. SEP 6498. 6457. -7544. -3560. -1152. -3474. -4247. -6265. 72. 5240. -3838. -2289. 403. -2600. -1923. 7638. -1826. 2210. -4981. -1639. OCT NOV OEC 2449. 13330. 1260. 8968. -1234. 7874. 1285. -3600. 4256. 2957. 1323. -2006. 1648. 8723. 883. -1650. 1780. 9847. -3429. -11048. 5633. 1737. -2435. -2525. -3086. -3732. -2413. -5556. 1732. -130. -3449. -2843. 3287. -952. -6159. -945. -1276. 1350. -5855. 1148. -4. -18. 1212. 866. 2799. 2103. 939. -831. -38. -792. 455. -2637. 24. 854. 861. 1208. 908. 1439. 2024. 940. -830. OkTK EVD STORAGE Of LAKE (0AM-3) EM JAN HAR FEB MS 215050. 223S48. 230350. »7! 254182. 2644 J2. 271199. 306662. 3074SB. 308691. -'I 310156. 311362. 314005. m 120787. 321694. 325852. )74 345000. 34SO00. 345000. »7S 339138. 341165. 340920. »7f 320454. 321315. 323958. 577 299947. 299195. 303933. J7fl 302311. 302271. 307634. 973 311205. 310499. 317279. 303917. 304285. 307074. 5«0 309417. 311632. 315793. 56' 582 305776. 307174. 308665. 322594. 323387. 324961. 583 564 313065. 313518. 320365. 585 309615. 310854. 311675. 309596. 310220. 315108. Me 321465. 322003. 325610. 294550. 292135. 305480. MB APR 230350. 276297. 326119. 322883. 331325. 337126. 343715. 329483. 304237. 313782. 323277. 309811. 315723. 312942. 330947. 315169. 322810. 315237. 331786. 310589. MAY 232799. 289627. 327379. 331851. 330092. 345000. 345000. 325883. 308493. 316739. 324600. 307806. 317371. 321665. 331829. 313519. 324590. 325084. 328357. 299541. JUN 236176 297798 326814 331800 337066 345000 336858 325314 300626 314525 322080 311677 310516 319570 330003 315938 314565 320546 319064 303303 JUL 236426. 289851. 328709. 329215. 335831. 342002. 330867. 318791. 297774. 30 SB 52. 317666. 310156. 306738. 325457. 332180. 305778. 307123. 325640. 315347. 300256. AUG 242921. 295471. 316593. 324195. 345000. 340108. 324294. 314259. 300547. 308470. 309838. 312680. 299266. 324008. 319961. 299106. 310817. 317339. 312750. 302506. SEP 249420. 301929. 309049. 320634. 343848. 336633. 320047. 307994. 300619. 313710. 305999. 310392. 299669. 321408. 318038. 306744. 308991. 319549. 307769. 300867. OCT NOV OEC 255052. 303666. 306614. 318109. 340762. 332901. 317634. 302438. 302351. 313580. 302550. 307548. 302955. 320457. 311878. 305799. 307715. 320899. 301914. 302015. 255048. 303648. 307825. 318975. 343561. 335004. 318574. 301607. 302313. 312788. 303005. 304912. 302980. 321167. 312332. 307044. 308339. 321175. 299382. 301488. 255902. 304508. 309033. 319884. 345000. 337029. 319514. 300777. 302269. 311996. 303461. 307121. 304378. 321878. 312696. 308370. 308967. 321451. 296955. 300951. ns m m m -44. -791. 456. 2209. 1398. 711. 711 . 453. 1245. 623. 276. -2532. -527. 364. 1326. 628. 276. -2428. -537. 3 SCENARIO 2 - GROUNDWATER = 521 DAM /MONTH S2U.0UT 4/20/90 Page 1 BUFFALO LAKE WATER BALANCE JAN 17/90 SCENARIO 2 - UPPER LEVEL GROUNDWATER (521 DAM"3/M0) END OF MONTH LAKE ELEVATION (M) YEAR JAN FEB MAR '969 779.530 779.630 779.710 1970 779.990 780.105 780.180 '9-1 780.637 780.645 780.659 1972 780.674 780.688 780.717 '973 780.790 780.800 780.847 1974 781.000 781.000 781.000 '9-5 780.935 780.957 780.955 '.976 780.727 780.737 780.766 '917 780.571 780.563 780.616 '978 780.630 780.629 780.690 19~9 780.724 780.716 780.793 '930 780.638 780.642 780.673 '961 780.696 780.721 780.768 '952 780.658 780.674 780.691 1963 780.843 780.852 780.869 1984 780.732 780.737 780.814 '985 780.701 780.715 780.724 '986 780.696 780.703 780.757 '957 780.826 780.832 780.872 '985 780.521 780.493 780.643 TOTAL PUMPING VOLUME (DAM"3) fEAR JAN FEB MAR '959 0. 0. 0. '970 0. 0. 0. 1971 0. 0. 0. '972 0. 0. 0. '973 0. 0. 0. '974 0. 0. 0. '975 0. 0. 0. '975 0. 0. 0. 0. 0. 0. '975 0. 0. 0. '979 0. 0. 0. '980 0. 0. 0. 1981 0. 0. 0. '982 0. 0. 0. '983 0. 0. 0. " 964 0. 0. 0. '985 0. 0. 0. '986 0. 0. 0. '987 c. 0. 0. '966 0. 0. 0. APR 779.710 780.237 780.854 780.816 780.908 780.913 780.986 780.828 780.619 780.758 780.859 780.704 780.766 780.738 780.935 780.755 780.846 780.758 780.941 780.701 MAY 779.739 780.385 780.868 780.915 780.893 781.000 781.000 780.788 780.666 780.788 780.872 780.680 780.785 780.834 780.945 780.736 780.866 780.868 780.902 780.585 JUN 779.779 780.476 780.861 780.915 780.971 781.000 780.910 780.781 780.594 780.763 780.844 780.723 780.707 780.810 780.924 780.763 780.753 780.816 780.797 780.627 JUL 779.781 780.387 780.882 780.885 780.957 780.967 780.843 780.709 780.565 780.665 780.794 780.706 780.665 780.876 780.948 780.649 780.669 780.874 780.755 780.604 AUG 779.858 780.450 780.747 780.829 781.000 780.946 780.770 780.658 780. 596 780.695 780.706 780.734 780.587 780.860 780.810 780.584 780.710 780.780 780.726 780.626 SEP 779.934 780.521 780.662 780.789 780.987 780.907 780.723 780.599 780.659 780.753 780.662 780.708 780.591 780.830 780.788 APR 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAY 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1237. JUN 5617. 5617. 0. 0. 0. 0. 0. 0. 1398. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5617. JUL 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2862. AUG 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 1954. 0. 0. 2733. 0. 0. 0. 4901. APR 4621. 3888. 0. 1628. 5757. 4057. 6438. 466. 88. 3761. 5106. 1501. 4591. 47 54. 10257. 3907. 19798. 5438. 7848. 417. MAY 10407. 20195. 3422. 13217. 2022. 13484. 7721. 8518. 4735. 17720. 12169. 6672. 2719. 14034. 1944. 752. 4754. 3940. 2791. 1471. •91^ • TOTAL SURFACE INFLOW INTO LAKE (DAM"3) 'EAR 1969 1970 '971 1972 '973 '974 '975 1976 1977 1976 1979 1960 1981 1982 1963 1984 1965 1966 1987 '966 JAN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. FEB 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAR 1941. 9235. 5076. 1830. 2680. 8118. 2612. 6346. 111. 290. 1185. 3370. 322. 65. 81. 430. 567. 5405. 85. 88. - OCT 780.001 780.603 780.635 780.760 780.953 780.866 780.696 780.599 780.630 780.752 780.623 780.676 780.627 780.819 780.719 780.669 780.658 780.690 780.675 780.805 780.820 780.670 780.604 780.607 780.625 NOV 780.001 780.603 780.648 780.770 780.984 780.889 780.706 780.590 780.630 780.742 780.628 780.646 780.627 780.827 780.724 780.672 780.682 780.823 780.575 780.619 DEC 780.010 780.612 780.661 780.780 781.000 780.911 780.717 780.581 780.629 780.733 780.633 780.671 780.643 780.835 780.728 780.687 780.689 780.826 780.548 780.613 SEP 5617. 5617. 0. 0. 0. 0. 0. 902. 5617. 0. 0. 0. 5617. 0. 0. 5617. 0. 0. 0. 0. OCT 5617. 5617. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 4212. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SEP 6897. 6359. 430. 1026. 3129. 358. 374. 1309. 5904. 1654. 166. 1491. 5724. 2318. 36. 5972. 554. 482. 36. 342. XT 6496. 5812. 117. 234. 1654. 176. 251. 5663. 192. 1114. 23. 531. 5803. 1078. 7. 619. 772. 795. 72. 4613. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. INCLUDE PUMPING VOLUME JUN 5659. 8108. 290. 1882. 2475. 407. 602. 996. 1606. 980. 365. 2227. 983. 1091. 899. 1716. 524. 1889. 427. 6457. JUL 6656. 8030. 964. 2348. 2390. 358. 1052. 674. 5721. 922. 466. 1762. 147. 2556. 3777. 81. 0. 781. 117. 4031. AUG 6363. 7196. 668. 1553. 2797. 576. 726. 781. 5773. 1159. 306. 2048. 2547. 1846. 1228. 2733. 528. 1267. 316. 6624. S2U.0UT 4/20/90 Page 2 LAKE PRECIPITATION (DAM"3) YEAR JAN FEB MAR 1969 0. 8071. 4629 1970 0. 9921. 0 1971 1981. 467. 0 1972 923. 902. 929 1973 706. 496. 1611 1974 2400. 2289. 27107 1975 1916. 1615. 0 1976 736. 553. 0 1977 0. 0. 6120 1978 0. 0. 5250 1979 0. 0. 6102 1980 38. 0. 0 1981 1904. 1717. 4745 1982 1098. 995. 1234 1983 413. 492. 1740 1984 59. 249. 7251 1985 840. 728. 576. 1986 216. 210. 10. 1987 125. 0. 3577. 1988 0. 0. 14858. 0. 0. 3121. 11055. LAKE EVAPORATION (DAM-3) YEAR JAN FEB 1969 521. 94. 1970 2241. 192. 1971 314. 209. 1972 316. 210. 1973 321. 107. 1974 Ill. 110. 1975 327. 109. 1976 317. 212. 1977 1366. 1286. 1978 487. 569. 1979 1331. 1244. 1980 104. 154. 1981 105. 0. 1982 209. 106. 1983 216. 215. 1984 212. 318. 1985 106. 0. 1986 106. 106. 1987 513. 107. 1988 2961. 2971. MAR 289. 2990. 4403. 635. 645. 114. 3378. 4225. 1971. 630. 956. 1117. 1383. 317. 756. 1282. 847. 1062. 540. 1969. MAR OUTFLOW FROM LAKE (DAM'3) YEAR JAN FEB 1969 0. 0. 1970 0. 0. 1971 0. 0. 1972 0. 0. 1973 0. 0. 1974 2810. 2700. 1975 0. 0. 1976 0. 0. 1977 0. 0. 1978 0. 0. 1979 0. 0. 1980 0. 0. 1981 0. 0. 1982 0. 0. 1983 0. 0. 1984 0. 0. 1985 0. 0. 1986 0. 0. 1987 0. 0. 1988 0. 0. 0. 0. 0. 0. 0. 35632. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. APR 0. 4363. 21023. 11504. 3105. 0. 0. 9671. 5760. 5722. 4584. 4736. 305. 3013. 0. OCT 2249. 5457. 1771. 0. JUN 7295. 11790. 10937. 10586. 16111. 14035. 1898. 9309. 3768. 8295. 7662. 13144. 3117. 8890. 8383. 10795. 3142. 6316. 4437. 10755. JUL 4762. 0. 12301. 7731. 10146. 11957. 5707. 5031. 5085. 3872. 8231. 9928. 8473. 16711. 11025. 3157. 7816. 17895. 10806. 8447. AUG 11546. 11474. 0. 6170. 20247. 10658. 5009. 6963. 8018. 13902. 4774. 13055. 3470. 8507. 150. 5109. 16805. 3581. 8887. 8525. SEP 7996. 9763. 1714. 4326. 5175. 4354. 4175. 2384. 6926. 11808. 5448. 4016. 4421. 3090. 7122. 10333. 5212. 10771. 3641. 6909. 1041. 338. 3795. 0. 790. APR 5142. 3674. 3965. 4715. 3917. 12452. 4163. 5133. 6069. 3828. 4208. 4012. 5556. 4025. 4855. 9744. 9308. 5904. 5341. 6834. MAY 8479. 8517. 10238. 10606. 9164. 7586. 7427. 12639. 9309. 15513. 11528. 9711. 9166. 9438. 10082. 8875. 11331. 9983. 11481. 12388. JUN 10098. 12249. 12325. 13061. 12101. 12541. 11163. 11395. 12454. 12064. 11115. 12005. 11584. 12646. 11671. 10610. 14355. 13352. 14803. 14014. JUL 11688. 16497. 11888. 13231. 14326. 15834. 13272. 12749. 13851. 14136. 13706. 13783. 12977. 13865. 13172. 14051. 15882. 14056. 15214. 15018. AUG 11935. 13571. 13423. 13325. 14105. 13650. 12829. 12796. 11586. 12951. 13550. 13100. 13490. 12372. 14293. 14187. 14125. 13795. 12362. 13711. SEP 8915. 10186. 10283. 9476. 9977. 8708. 9317. 9577. 7672. 8698. 10037. 8374. 10345. 8600. 9633. 9173. 8151. 9548. 9246. 9447. APR MAY 0. 0. 0. 0. 0. 19999. 17034. JUN JUL AUG 0. 0. 0. 0. 5609. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. SEP 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAY 0. 1131. 7531. 5794. 5356. 21455. 17504. 0. 8299. 0. 0. 387. 7553. 3527. 8480. 5916. 7790. 15437. 4658. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2422. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1348. NOV 615. 604. 1949. 1304. 3371. 3092. 1788. 0. 0. 391. 1945. 747. 995. 155. 1078. 0. 0. 838. 1593. 434. 1479. 984. 1468. 1049. 933. 0. 392. 0. 0. OCT 3633. 4437. 4872. 3308. 5261. 4429. 4532. 6132. 3663. 3735. 4796. 3947. 3917. 4177. 6771. 3154. 2940. 3760. 6526. 4349. NOV 1141. 1147. 1253. 956. 1093. 1510. 1370. 1366. 1563. 1486. 1145. 3200. 937. 1287. 1052. 735. 945. 1182. 3090. 1456. DEC 571. 521. 631. 533. 331. 760. 740. 1365. 731. 1331. 209. 732. 523. 430. 529. 317. 317. 322. 2984. 1073. XT NOV DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 904. 864. 1324. 924. 2532. 2263. 1160. 0. 158. 0. 143. 2443. 1412. 622. 370. 1133. 425. 74. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1283. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S2U.0UT 4/20/90 STORAGE CHANGE IN LAKE (DAM*3) YEAR OAS FEB MAR 1969 0. 8498. 6802. •9-0 -1720. 10250. 6766. '=-1 2189. 778. 1194. 197! 1128. 1212. 2645. '9-3 576. 910. 4167. '9-4 0. 0. 0. '5-5 2110. 2027. -245. '5-6 940. 362. 2643. 1977 -845. -765. 4781. '9-6 34. -48. 5432. '9-9 -810. -723. 6852. '360 4S4. 367. 2774. '981 2320. 2238. 4205. '53: 1410. 1410. 1503. '563 -'6. "9-. 1587. '554 368. 452. 6920. 1985 1255. 1249. 816. '565 63' . 625. 4874. '558. 539. 3644. '536 -2440. -2450. 13498. END STORAGE OF LAKE (DAM-3) JAN FEB MAR 215050. 223548. 230350. 254182. 264432. 271199. • 312312. 313091. 314284. •972 315665. 316877. 319522. •373 326132. 327042. 331209. • 7-4 345000. 345000. 345000. '5-5 339138. 341165. 340920. '5-5 320454. 321315. 323958. ' 977 306414. 305649. 310430. '575 311676. 311628. 317060. '5-5 320204. 319480. 326333. ' 556 312451. 312818. 315591. 317677. 319914. 324119. 1981 '559 314260. 315670. 317173. '553 330851. 331648. 333234. '534 320894. 321346. 328266. '535 318097. 319346. 320162. ' 5 = 5 317634. 318259. 323133. '557 329322. 329861. 333504. ' 553 301865. 299415. 312913. ; ' -' 1 '56 5 ' 5-: Page 3 APR MAY JUN 0. 2449. 3377. 5098. 13330. 8170. 17579. 1236. -577. 8937. 8926. -72. 5467. -1265. 7007. -7874. 7874. 0. 2796. 1285. -8142. 552S. -3600. -570. 301. 4246. -6559. 6176. 2728. -2268. 6003. 1162. -2567. 2747. -2131. 3887. -138. 1627. -6963. 4263. 8644. -2144. 5923. 863. -1868. -5316. -1686. 2422. 11011. 1734. -10169. 55. 9915. -4626. 6149. -3511. -9417. 5159. -10396. 3719. APR 230350. 276297. 331863. 328460. 336675. 337126. 343715. 329483. 310731. 323236. 332336. 318338. 323981. 321437. 339158. 322950. 331173. 323188. 339654. 318071. MAY 232799. 289627. 333099. 337385. 335411. 345000. 345000. 325883. 314977. 325963. 333497. 316207. 325608. 330081. 340020. 321264. 332907. 333104. 336143. 307675. JUN 236176. 297798. 332522. 337313. 342417. 345000. 336858. 325314. 308418. 323695. 330930. 320094. 318644. 327937. 338152. 323686. 322739. 328478. 326725. 311395. JUL 250. -7946. 1898. -2631. -1269. -2998. -5992. -6523. -2524. -8821. -4489. -1573. -3836. 5924. 2151. -10292. -7546. 5141. -3770. -2020. AUG 6495. 5620. -12234. -5081. 3B51. -1895. -6573. -4532. 2727. 2631. -7949. 2524. -6953. -1499. -12394. -5823. 3729. -8427. -2638. 1959. SEP 6498. 6457. -7619. -3604. -1152. -3474. -4247. -5363. 5679. 5284. -3901. -2346. 321. -2671. -1954. 7654. -1864. 2225. -5048. -1675. JUL 236426. 289851. 334421. 334682. 341149. 342002. 330867. 318791. 305894. 314875. 326442. 318521. 314809. 333861. 340303. 313393. 315193. 333619. 322956. 309375. AUG 242921. 295471. 322187. 329602. 345000. 340108. 324294. 314259. 308620. 317506. 318493. 321045. 307856. 332362. 327909. 307570. 318921. 325193. 320318. 311334. SEP 249420. 301929. 314568. 325998. 343848. 336633. 320047. 308896. 314300. 322790. 314592. 318699. 308177. 329691. 325954. 315224. 317058. 327418. 315269. 309660. OCT 5633. 7354. -2463. -2553. -3086. -3732. -2413. 52. -2559. -156. -3505. -2895. 3245. -985. -6243. -974. -1309. 1351. -5933. 1575. NOV -4. -23. 1218. 869. 2799. 2103. 939. -845. -47. -811. 454. -2679. IS. 713. 453. 1255. 625. 273. -2569. -543. OEC 854. 864. 1214. 912. 1439. 2024. 940. -844. -53. -810. 455. 2231. 1410. 713. 362. 1337. 630. 273. -2463. -552. OCT NOV 255052. 255048. 309283. 309260. 312105. 313323. 323445. 324314. 340762. 343561. 332901. 335004. 317634. 318574. 308948. 308103. 311741. 311694. 322635. 321824. 311087. 311542. 315804. 313126. 311422. 311440. 328706. 329419. 319711. 320164. 314250. 315505. 315749. 316373. 328768. 329041. 309337. 306768. 311234. 310692. DEC 255902. 310123. 314537. 325226. 345000. 337029. 319514. 307259. 311642. 321014. 311997. 315357. 312850. 330132. 320526. 316842. 317003. 329314. 304305. 310139. 3 SCENARIO 3 - GROUNDWATER = 521 DAM /MONTH S3U.0UT 4/20/90 Page 1 ' BUFFALO LAKE WATER BALANCE JAN 17/90 SCENARIO 3 - UPPER LEVEL GROUNDWATER (521 DAM"3/M0) END OF MONTH LAKE ELEVATION (M) YEAR JAN FEB MAR 1969 779.530 779.630 779.710 1970 779.990 780.105 780.180 1971 •780.637 780.645 780.659 1972 780.765 780.778 780.808 1973 780.872 780.882 780.929 1974 781.000 781.000 781.000 1975 780.935 780.957 780.955 1976 780.737 780.746 780.776 1977 780.664 780.655 780.709 1978 780.724 780.724 780.785 1979 780.815 780.807 780.884 1980 780.724 780.729 780.759 1981 780.780 780.805 780.852 1982 780.750 780.765 780.782 1983 780.931 780.940 780.958 1984 780.782 780.787 780.865 1985 780.783 780.797 780.806 1986 780.773 780.780 780.834 1987 780.901 780.907 780.948 1988 780.613 780.586 780.737 TOTAL PUMPING VOLUME (DAM"3) YEAR JAN FEB MAR 1969 0. 0. 0. 1970 0. 0. 0. 1971 0. 0. 0. 1972 0. 0. 0. 1973 0. 0. 0. 1974 0. 0. 0. 1975 0. 0. 0. 1976 0. 0. 0. 1977 0. 0. 0. 1978 0. 0. 0. 1979 0. 0. 0. 1980 0. 0. 0. 1981 0. 0. 0. 1982 0. 0. 0. 1983 0. 0. 0. 1984 0. 0. 0. 1985 0. 0. 0. 1986 0. 0. 0. 1987 0. 0. 0. 1988 0. 0. 0. APR MAY JUN 779.710 779.739 779.779 780.237 780.385 780.476 780.854 780.868 780.861 780.908 781.000 780.999 780.989 780.975 781.000 780.913 781.000 781.000 780.986 781.000 780.910 780.837 780.797 780.791 780.712 780.759 780.691 780.854 780.882 780.856 780.951 780.962 780.933 780.790 780.765 780.808 780.850 780.868 780.789 780.829 780.925 780.900 781.000 781.000 780.979 780.805 780.786 780.813 780.927 780.946 780.831 780.834 780.945 780.893 781.000 780.960 780.855 780.795 780.681 780.722 APR 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAY 5617. 5617. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 1532. APR 4621. 3888. 0. 1628. 5757. 4057. 6438. 466. 88. 3761. 5106. 1501. 4591. 4754. 10257. 3907. 19798. 5438. 7848. 417. MAY 10407. 20195. 3422. 13217. 2022. 13484. 7721. 8518. 4735. 17720. 12169. 6672. 2719. 14034. 1944. 752. 4754. 3940. 2791. 1766. JAN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. FEB 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAR 1941. 9235. 5076. 1830. 2680. 8118. 2612. 6346. 111. 290. 1185. 3370. 322. 65. 81. 430. 567. 5405. 85. 88. AUG 779.858 780.450 780.747 780.912 781.000 780.946 780.770 780.708 780.691 780.786 780.793 780.818 780.680 780.949 780.861 780.666 780.788 780.856 780.783 780.725 SEP 779.934 780.521 780.690 780.871 780.987 780.907 780.723 780.693 780.754 780.845 780.749 780.792 780.682 780.919 780.839 780.751 780.767 780.880 780.726 780.706 OCT 780.001 780.603 780.725 780.842 780.953 780.866 780.705 780.693 780.725 780.843 780.709 780.759 780.718 780.908 780.769 780.740 780.752 780.895 780.698 780.726 NOV 780.001 780.603 780.739 780.852 780.984 780.889 780.716 780.683 780.725 780.834 780.714 780.729 780.718 780.915 780.774 780.754 780.759 780.898 780.669 780.720 DEC 780.010 780.612 780.752 780.862 781.000 780.911 780.726 780.674 780.724 780.824 780.719 780.754 780.734 780.923 780.778 780.769 780.766 780.901 780.641 780.713 JUL 5617. 5617. 0. 0. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 0. 110. 0. 0. 0. 3371. AUG 5617. 5617. 0. 0. 0. 0. 0. 3618. 5617. 0. 0. 0. 3043. 0. 0. 5617. 0. 0. 0. 4895. SEP 5617. 5617. 2530. 0. 0. 0. 0. 5000. 5617. 0. 0. 0. 5617. 0. 0. 5617. 0. 0. 0. 0. OCT 5617. 5617. 5617. 0. 0. 0. 852. 5617. 0. 0. 0. 0. 5617. 0. 0. 0. 0. 0. 3396. 4457. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. SEP 6897. 6359. 2960. 1026. 3129. 358. 374. 5407. 5904. 1654. 166. 1491. 5724. 2318. 36. 5972. 554. 482. 36. 342. OCT 6496. 5812. 5734. 234. 1654. 176. 1103. 5663. 192. 1114. 23. 531. 5803. 1078. 7. 619. 772. 795. 3468. 4858. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0: - INCLUDE PUMPING VOLUME TOTAL SURFACE INFLOW INTO LAKE (DAM~3) YEAR 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 JUN 5617. 5617. 0. 0. 0. 0. 0. 0. 1900. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5617. JUL 779.781 780.387 780.8B2 780.969 780.986 780.967 780.843 780.718 780.661 780.756 780.882 780.790 780.746 780.966 781.000 780.699 780.747 780.950 780.813 780.704 JUN 5659. 8108. 290. 1882. 2475. 407. 602. 996. 2108. 980. 365. 2227. 983. 1091. 899. 1716. 524. 1889. 427. 6457. JUL 6656. 8030. 964. 2348. 2390. 358. 1052. 674. 5721. 922. 466. 1762. 147. 2556. 3777. 191. 0. 781. 117. 4540. AUG 6363. 7196. 668. 1553. 2797. 576. 726. 4399. 5773. 1159. 306. 2048. 3636. 1846. 1228. 5617. 528. 1267. 316. 6618. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. c. 0. 0. 0. 0. DEC 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. c. 0. 0. 0. 0. 0. 0. S3U.OUT 4/20/90 Page 2 LAKE PRECIPITATION (DAM"3) YEAR JAN FEB MAR 1969 8071. 4629. 1970 0. 9921. 0 1971 0. 467. 1981 1972 941. 914. 934 1973 1629. 502. 714 1974 27107. 2289. 2400 1975 0. 1615. 1916 1976 0. 553. 737 6202. 1977 0. 0 5322. 1978 0. 0 6181. 1979 0. 0 1980 0. 38 0. 1981 1737. 1927 4801. 1008. 1982 1113 1250. 418 1983 1762. 498. 60 1984 7302. 251. 850 1985 582. 737. 218 1986 10. 212. 0 3615. 1987 126. 0 15059. 1988 c LAKE EVAPORATION (DAM"3) YEAR JAN FEB 1969 521. 94. 1970 2241. 192. 1971 314. 209. 1972 320. 213. 1973 324. 108. 1974 111. 1975 327. 109. 1976 318. 212. 1977 1384. 1304. 1978 493. 577. 1979 1348. 1260. 1980 106. 156. 1981 107. 0. 1982 212. 107. 1983 218. 218. 1984 214. 320. 1985 107. 0. 1986 107. 107. 1987 518. 108. 1988 3001. 3011. no. OUTFLOW FROM LAKE (DAM"3) YEAR JAN FEB 1969 0. 0. 1970 0. 0. 1971 0. 0. 1972 0. 0. 1973 0. 0. 1974 2810. 2700. 1975 0. 0. 1976 0. 0. 1977 0. 0. 1978 0. 0. 1979 0. 0. 1980 0. 0. 1981 0. 0. 1982 0. 0. 1983 0 . 0 . 1984 0. 0. 1985 0. 0. 1986 0. 0. 1987 0. 0. 1988 0. 0. MAR 289. 2990. 4403. 643. 653. 114. 3378. 4230. 1998. 638. 968. 1131. 1400. 321. 765. 1291. 857. 1073. 545. 1996. APR 0. 4363. 21023. 11652. 3141. 0. 0. 9684. 5838. 5799. 4643. 4794. 309. 3052. 0. 0. 0. 0. 3154. 11204. APR 5142. 3674. 3965. 4776. 3961. 12452. 4163. 5140. 6150. 3879. 4262. 4061. 5621. 4077. 4915. 9813. 9416. 5968. 5397. 6926. MAR 0 0 0 0 0 35632 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 2090 0 0 0 1469 0 • 0. JUN 7295. 11790. 10937. 10709. 16293. 14035. 1898. 9321. 3818. 8403. 7758. 13302. 3153. 9002. 8446. 10871. 3176. 6384. 4473. 10904. JUL 4762. 0. 12301. 7820. 10186. 11957. 5707. 5038. 5156. 3922. 8333. 10047. 8572. 16921. 11108. 3179. 7902. 18086. 10894. 8563. AUG 11546. 11474. 0. 6242. 20327. 10658. 5009. 6972. 8130. 14083. 4833. 13212. 3510. 8613. 151. 5146. 16991. 3619. 8959. 8648. SEP 7996. 9763. 1714. 4376. 5175. 4354. 4175. 2401. 7021. 11961. 5516. 4064. 4480. 3129. 7173. 10455. 5270. 10885. 3671. 7008. OCT 2249. 5457. 1778. 0. 0. 0. 1248. 0. 397. 1970. 757. 0. 849. 1613. 0. 1053. 342. 3835. 0. 801. NOV 615. 604. 1975. 1319. 3371. 3092. 1791. 0. 1009. 157. 1091. 0. 439. 1498. 991. 1485. 1060. 943. 0. 397. DEC 904. 864. 1341. 935. 2532. 2263. 1161. 0. 160. 0. 145. 2472. 1430. 630. 373. 1146. 430. 75. 0. 0. MAY 8479. 8517. 10238. 10742. 9268. 7586. 7427. 12655. 9434. 15722. 11675. 9830. 9274. 9560. 10172. 8937. 11458. 10090. 11574. 12555. JUN 10098. 12249. 12325. 13213. 12237. 12541. 11163. 11410. 12619. 12222. 11254. 12150. 11720. 12805. 11759. 10685. 14515. 13495. 14923. 14208. JUL 11688. 16497. 11888. 13385. 14382. 15834. 13272. 12766. 14045. 14320. 13877. 13949. 13128. 14039. 13272. 14149. 16059. 14206. 15337. 15225. AUG 11935. 13571. 13423. 13479. 14160. 13650. 12829. 12813. 11747. 13119. 13718. 13257. 13647. 12527. 14396. 14289. 14282. 13942. 12462. 13909. SEP 8915. 10186. 10283. 9586. 9977. 8708. 9317. 9644. 7777. 8811. 10161. 8474. 10483. 8708. 9702. 9281. 8241. 9650. 9321. 9581. OCT 3633. 4437. 4891. 3346. 5261. 4429. 4532. 6215. 3713. 3784. 4856. 3994. 3968. 4229. 6819. 3191. 2973. 3800. 6578. 4411. NOV 1141. 1147. 1269. 967. 1093. 1510. 1372. 1385. 1584. 1505. 1159. 3238. 949. 1303. 1060. 743. 955. 1194. 3131. 1477. DEC 571. S21. 639. 540. 331. 760. 741 . 1383. 741. 1348. 211. 741. 530. 435. 533. 320. 320. 325. 3024. 1089. MAY 0 0 0 585 0 19999 17034 0 0 0 0 0 0 0 848 0 0 0 JUN JUL AUG 0. 0. 0. 0. 8199. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. SEP OCT 0. 0. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. NOV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. DEC 0. 0-. 0. 0. 1283. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. MAY 0. 1131. 7531. 5868. 5417. 21455. 17504. 0. 8410. 0. 0. 392. 7642. 3573. 8556. 5957. 7877. 15604. 4696. 0. 0. 0. 0. 4780. 2422. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. D. 0. 0. 241. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. S3U.0UT 4/20/90 Page 3 STORAGE CHANGE IN LAKE CDAM"3) YEAR JAN FEB MAR 1969 0. 8498. 6802. 1970 -1720. 10250. 6766. 1971 2189. 778. 1194. 1972 1136. 1221. 2649. 1973 911. 915. 4178. 1974 0. 0. 0. 1975 2110. 2027. -245. 1976 940. 862. 2637. 1977 -863. 4837. -783. 1978 28. -56. 5494. 1979 -827. -739. 6919. 1980 453. 365. 2760. 1981 2341. 2258. 4245. 1982 1422. 1422. 1515. 1983 721. 801. 1599. 1984 367. 6962. 452. 1985 1264. 1258. 813. 1986 632. 626. 4863. 1987 3. 3676. 539. 1988 13672. -2480. -2490. 0. 5098. 17579. 9025. 5457. -7874. 2796. 5531. 297. 6202. 6008. 2756. -201. 4250. 3773. -5385. 10903. -9. 4657. 5216. MAY 2449. 13330. 1236. 8279. -1308. 7874. 1285. -3616. 4232. 2519. 1015. -2245. 1608. 8568. 0. -1707. 1694. 9974. -3567. -10267. JUN 3377. 8170. -577. -101. 2272. 0. -8142. -572. -6171. -2317. -2610. 3901. -7062. -2191. -1893. 2423. -10293. -4701. -9502. 3674. JUL 250. -7946. 1898. -2695. -1285. -2998. -5992. -6533. -2647. -8954. -4557. -1619. -3888. 5959. 1893. -10259. -7635. 5182. -3806. -1600. AUG 6495. 5620. -12234. -5163. 1285. -1895. -6573. -921. 2677. 2644. -8058. 2523. -5980. -1547. -12496. -3005. 3758. -8536. -2666. 1879. SEP 6498. 6457. -5088. -3663. -1152. -3474. -4247. -1316. 5669. 5325. -3958. -2398. 242. -2740. -1972. 7668. -1896. 2238. -5094. -1711. OCT 5633. 7354. 3142. -2591. -3086. -3732. -1561. -31. -2604. -179. -3555. -2942. 3204. -1017. -6291. -998. -1338. 1351. -2589. 1768. NOV -4. -23. 1227. 873. 2799. 2103. 940. -864. -54. -828. 454. -2717. 11. 715. 452. 1263. 626. 270. -2610. -558. DEC 854. 864. 1223. 916. 1439. 2024. 941. -862. -60. -827. 454. 2252. 1422. 716. 361. 1347. 631. 270. -2503. -568. MONTH END STORAGE OF LAKE (DAM-3) YEAR JAN FEB MAR 1969 215050. 223548. 230350. 1970 254182. 264432. 271199. 1971 312312. 313091. 314284. 1972 323826. 325047. 327696. 1973 333487. 334401. 338579. 1974 345000. 345000. 345000. 1975 339138. 341165. 340920. 1976 321307. 322170. 324806. 1977 314758. 313975. 318812. 1978 320178. 320122. 325616. 1979 328373. 327633. 334552. 1980 320199. 320564. 323324. 325175. 327433. 331678. 1981 322456. 323878. 325393. 1982 338827. 339628. 341227. 1983 1984 325420. 325872. 332834. 1985 325445. 326702. 327515. 1986 324598. 325223. 330086. 1987 336129. 336668. 340343. 310184. 307693. 321365. 1988 APR 230350. 276297. 331863. 336721. 344036. 337126. 343715. 330337. 319109. 331818. 340560. 326079. 331478. 329643. 345000. 327449. 338419. 330077. 345000. 326581. MAY 232799. 289627. 333099. 345000. 342728. 345000. 345000. 326721. 323341. 334337. 341575. 323834. 333085. 338211. 345000. 325742. 340113. 340051. 341433. 316313. JUN 236176. 297798. 332522. 344899. 345000. 345000. 336858. 326149. 317170. 332020. 338965. 327735. 326023. 336020. 343107. 328166. 329820. 335350. 331932. 319987. JUL 236426. 289851. 334421. 342204. 343715. 342002. 330867. 319616. 314522. 323066. 334408. 326116. 322135. 341980. 345000. 317907. 322184. 340532. 328126. 318388. AUG 242921. 295471. 322187. 337041. 345000. 340108. 324294. 318694. 317199. 325709. 326350. 328639. 316155. 340433. 332504. 314902. 325943. 331997. 325460. 320266. SEP 249420. 301929. 317098. 333378. 343848. 336633. 320047. 317378. 322868. 331034. 322392. 326241. 316398. 337693. 330532. 322570. 324046. 334235. 320366. 318555. OCT 255052. 309283. 320240. 330786. 340762. 332901. 318486. 317347. 320265. 330855. 318838. 323299. 319602. 336676. 324241. 321571. 322709. 335586. 317777. 320324. NOV 255048. 309260. 321467. 331660. 343561. 335004. 319426. 316483. 320210. 330027. 319291. 320582. 319613. 337391. 324693. 322834. 323335. 335856. 315167. 319766. DEC 255902. 310123. 322690. 332576. 345000. 337029. 320367. 315621. 320150. 329200. 319746. 322834. 321034. 338107. 325054. 324181. 323966. 336126. 312664. 319198. APR TECHNICAL APPENDIX I I The Water Quality report is a technical supporting document prepared by HydroQual C o n s u l t i n g L t d . f o r the P a r l b y Creek Buffalo Lake Development Component Environmental Impact Assessment, prepared by Environmental Management A s s o c i a t e s L t d . The r e s u l t s o f the water balance and water q u a l i t y m o d e l l i n g were used t o a s s e s s the impacts of B u f f a l o Lake S t a b i l i z a t i o n on water q u a l i t y o f B u f f a l o Lake and Red Deer R i v e r . BUFFALO LAKE ENVIRONMENTAL IMPACT ASSESSMENT: WATER QUALITY TECHNICAL APPENDIX I I HydroQual Canada L i m i t e d Calgary Authors: J.S. Goudey H.R. Hamilton L.R. L i n t o n B. T a y l o r MARCH, 1991 HydroQuaL TABLE OF CONTENTS 1 1.0 INTRODUCTION 1.1 Water Q u a l i t y Assessment: 2.0 SALINITY 14 2.1 H i s t o r i c Patterns 14 2.1.1 Model C a l i b r a t i o n 1 2.1.2 C a l c i t e Saturation 25 2.2 Post-Development c o n d i t i o n 27 3.0 PHOSPHORUS 31 3.1 E x i s t i n g Conditions 32 3.2 I n f l u e n c e o f Pumping 38 3.2.1 Red Deer R i v e r Phosphorus L e v e l s 38 3.2.2 Conveyance System 42 3.3 Stabilization Phosphorus Impacts 5 Approach on Buffalo Lake 5 Total 50 4.0 NITROGEN 55 5.0 ALGAL BIOMASS 57 6.0 MACROPHYTES 60 6.1 E x i s t i n g Conditions 60 6.2 Changes in Distribution Levels . Aquatic Macrophyte Abundance Following Stabilization of and Lake 75 7.0 RED DEER RIVER IMPACTS 78 8.0 DISSOLVED OXYGEN 80 9.0 WATER QUALITY IMPACTS AND MITIGATION 82 10.0 References 86 APPENDIX IIA HydroQual LIST OF FIGURES 1.0 B u f f a l o Lake Map 2 1.1 Model Schematic 7 1.2 Water Balance - E x i s t i n g c o n d i t i o n s 9 1.3 Water Balance - Pumping S c e n a r i o 3 10 2.1 Conductance: Inflow 16 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 3.4 3.5 3.6 I n f l u e n c e of Groundwater Sodium: E x i s t i n g v e r s u s Post-Development Conditions 19 Potassium: Conditions 20 E x i s t i n g versus Post-Development Sulphate: E x i s t i n g v e r s u s Post-Development Conditions 21 Calcium: U n c o r r e c t e d and C o r r e c t e d f o r Losses from Calcium Carbonate P r e c i p i t a t i o n . . . . . . . 22 Magnesium: U n c o r r e c t e d and C o r r e c t e d f o r Losses from Magnesium Carbonate P r e c i p i t a t i o n 24 Conductance: Conditions 26 E x i s t i n g v e r s u s Post-Development T o t a l Phosphorus: I n f l u e n c e of the Sedimentation Rate 36 T o t a l Phosphorus: I n t e r n a l Loading E f f e c t s on Lake Phosphorus L e v e l s 39 Red Deer R i v e r : T o t a l Phosphorus and T o t a l D i s s o l v e d Phosphorus C o n c e n t r a t i o n s 43 Red Deer R i v e r : Concentrations 44 Orthophosphorus T o t a l Phosphorus: E x i s t i n g and PostDevelopment C o n d i t i o n s 51 T o t a l Phosphorus I n f l u e n c e o f R i v e r TP C o n c e n t r a t i o n s on TP L e v e l s i n B u f f a l o Lake . . . . 52 HydroQual LIST OF TABLES 1.1 P o t e n t i a l Water Q u a l i t y Impacts of S t a b i l i z i n g the L e v e l o f B u f f a l o Lake w i t h Red Deer R i v e r Water 6 Groundwater, Surface Water and P r e c i p i t a t i o n Ion Q u a l i t y 12 Average Water Q u a l i t y Data f o r Red Deer R i v e r Water, P a r l b y Creek and B u f f a l o Lake 13 C a l c i t e S a t u r a t i o n I n d i c e s f o r the Red Deer R i v e r , P a r l b y Creek and B u f f a l o l a k e 29 L e v e l s of T o t a l Phosphorus and C h l o r o p h y l l a i n A l b e r t a S a l i n e Lakes 37 C a l c u l a t e d Loadings o f T o t a l N i t r o g e n and Phosphorus t o the Red Deer R i v e r from t h e Red Deer R i v e r Sewage Treatment P l a n t 40 3.3 Morphometric Data on the Conveyance Route 45 3.4 Loss o f Phosphorus i n the Spotted Lake Area of the P a r l b y Creek Conveyance Systems: Data Analyzed by Year 48 Loss o f Phosphorus i n the Spotted Lake Area of t h e P a r l b y Creek Conveyance Systems: Data Analyzed by Month 49 3.6 Phosphorus Budget f o r B u f f a l o l a k e 53 5.1 P r e d i c t e d L e v e l s of A l g a l biomass i n B u f f a l o Lake before and a f t e r S t a b i l i z a t i o n 59 P r o j e c t e d Changes i n Conductance and T o t a l Phosphorus i n Red Deer R i v e r Water R e c e i v i n g Outflow from T a i l Creek 79 Winter D i s s o l v e d Oxygen C o n c e n t r a t i o n s and Secondary Bays 81 1.2 1.3 2.1 3.1 3.2 3.5 7.1 8.1 9.1 B u f f a l o Lake S t a b i l i z a t i o n : Q u a l i t y Impacts i n Main Summary o f Water 83 HydroQual 1.0 INTRODUCTION B u f f a l o Lake i s a r e l a t i v e l y l a r g e and shallow waterbody with high l e v e l s of d i s s o l v e d s o l i d s (high s a l i n i t y ) . I t has a s u r f a c e of 3 roughly area 11,000 ha, volume o f 280,000 dam , and mean depth of 2.5 m a t a s u r f a c e e l e v a t i o n of 780.4 m (Volume Two, Main Report Section 3.5). The lake i s composed o f two b a s i n s , Secondary Bay (Figure 1.0). corner P a r l b y Creek flows i n t o t h e northwest o f Secondary Bay and the o u t l e t , T a i l Creek, i s l o c a t e d i n the southwest corner. Although T a i l Creek flows i n t o the Red Deer R i v e r , no water has s p i l l e d s i n c e A Main Bay and recent re-analysis 1929. o f the hydrogeology and surface hydrology i n d i c a t e s t h a t t h e r e i s a groundwater i n f l o w but c o n d i t i o n s do not support the e x i s t e n c e of a s u b s t a n t i a l groundwater outflow (Volume Two, Main Report - S e c t i o n s 3.5 and 3.6) . Buffalo In t h i s r e s p e c t , Lake i s p r e s e n t l y a h y d r o l o g i c a l l y c l o s e d system. The p o t e n t i a l water q u a l i t y impacts of s t a b i l i z i n g l e v e l s with Red Deer R i v e r water are complex. i n two r e p o r t s These r e s u l t s ( A l b e r t a Environment, 1984; and r e c e n t l y overviewed i n "Water Q u a l i t y E v a l u a t i o n Lake S t a b i l i z a t i o n P r o j e c t " Lake Major concerns have been i d e n t i f i e d and s t u d i e d over the l a s t t e n y e a r s . were summarized Buffalo 1987) of B u f f a l o ( A l b e r t a Environment, 1989). P o t e n t i a l water q u a l i t y impacts i d e n t i f i e d i n these r e p o r t s i n v o l v e the following issues: how l a k e s a l i n i t y w i l l change with i n t r o d u c t i o n of more d i l u t e Red Deer R i v e r water, how changes i n n u t r i e n t l e v e l s and s a l i n i t y w i l l a f f e c t p l a n t and a l g a l growth i n B u f f a l o Lake, and HydroQual 3 how changes i n p l a n t growth w i l l a f f e c t water use. The a d d i t i o n o f more d i l u t e Red Deer R i v e r water t o s t a b i l i z e l a k e l e v e l s i s expected t o a f f e c t the s a l i n i t y of B u f f a l o Lake. Mass balance s t u d i e s have i n d i c a t e d t h a t the g r e a t e s t f r e s h e n i n g will occur 1984, i n Secondary Bay 1987) . (discussed i n A l b e r t a Environment, Exchange and mixing of water between bays w i l l s a l i n i t y i n Main Bay gradient (Norecol, 1984). Establishment i n Secondary Bay d u r i n g pumping lower the of a density c o u l d a f f e c t mixing and r e s u l t i n s h o r t c i r c u i t i n g o f more d i l u t e water t o the o u t l e t . greatest concern, conditions however, f o r plant i s the c r e a t i o n and algal growth of more with the favourable freshening Secondary Bay and p r e d i c t e d change i n n u t r i e n t l o a d i n g s Environment, 1984, Previous of plant 1987). species and l i m i t e d by t h e h i g h s a l i n i t y 1985). of (Alberta s t u d i e s demonstrated t h a t the d i s t r i b u t i o n and aquatic The algal growth abundance i n Buffalo Lake are (Noton, 1984; B i e r h u i z e n and Prepas, The r e l a t i o n s h i p between a l g a l p r o d u c t i o n and s a l i n i t y i s well established f o r Alberta lakes ( B i e r h u i z e n and Prepas, 1985). For a g i v e n phosphorus c o n c e n t r a t i o n , the l e v e l of a l g a l production decreases w i t h i n c r e a s i n g l e v e l s of t o t a l d i s s o l v e d i o n s . respect, a reduction i n lake salinity with pumping, In t h i s without any change i n t o t a l phosphorus l e v e l s , c o u l d i n c r e a s e a l g a l growth and impair water use. Further, distribution abundance and Environment 1984, changes i n s a l i n i t y c o u l d a f f e c t the of aquatic macrophytes (Alberta 1987). Although B u f f a l o Lake i s a h y d r o l o g i c a l l y c l o s e d system, s a l i n i t y levels a r e not inflow and additional the strictly evaporation. c o n t r o l l e d by surface and solubility is groundwater likely an f a c t o r a f f e c t i n g l e v e l s of t o t a l d i s s o l v e d s o l i d s and mechanism responsible Chemical f o r maintaining relatively constant l e v e l s o f conductance (Notdn, 1984; Crompton, 1984: conductance i s a measure o f t h e e l e c t r i c a l p r o p e r t i e s o f a s o l u t i o n and i s r e l a t e d HydroQual 4 to the level of t o t a l dissolved ions). Subsequent field and l a b o r a t o r y s t u d i e s have demonstrated t h a t B u f f a l o Lake i s p r e s e n t l y supersaturated with (Noton, Crompton, 1984; respect t o calcium 1984). These and magnesium carbonate ions may complexes and are removed from the water column. form i n s o l u b l e A p r e c i p i t a t e was i n f a c t observed f o l l o w i n g d i l u t i o n of B u f f a l o Lake water w i t h Red Deer R i v e r water. The formation of i n s o l u b l e carbonates may have confounded previous attempts t o d e r i v e mass balances f o r major i o n s i n B u f f a l o Lake. Previous phosphorus l o a d i n g estimates f o r pumping Red Deer R i v e r water were based on monitoring data c o l l e c t e d between 1981 and 198 6 (Alberta Environment 1984, 1987, 1989). An increase in lake phosphorus l e v e l s was p r o j e c t e d due t o h i g h e r phosphorus l e v e l s i n the pumped water. R i v e r phosphorus c o n c e n t r a t i o n s were observed t o be high during the i n i t i a l years of t h i s monitoring p e r i o d compared to more recent data. the more recent concerns were i d e n t i f i e d Environment occasional must be r e v i s e d based on data. A number of other Alberta Loading estimates return and flow the Study Team. from B u f f a l o i n c o n s u l t a t i o n with Water withdrawal and Lake v i a T a i l impact on water q u a l i t y i n the Red Deer R i v e r . occur during periods of pumping and high r a i n f a l l . of lake growth levels of will also create submergent and emergent an expanded Creek could Some s p i l l a g e littoral vegetation. may Stabilization The zone f o r extent of development of t h i s l i t t o r a l zone and the s t r u c t u r e of the p l a n t communities determined by will be largely the water depth and c l a r i t y , s a l i n i t y , s u b s t r a t e , presence/absence of other competing species and production may Further, shoreline changes phosphorus may stability. Increases in total a l s o c r e a t e an oxygen demand above present i n the r e l a t i v e concentrations plant levels. of n i t r o g e n and i n f l u e n c e the s t r u c t u r e o f the a l g a l communities. A s h i f t i n the N:P r a t i o f a v o u r i n g growth of blue-green algae c o u l d impair water use f o r r e c r e a t i o n a l purposes. HydroQual 5 P o t e n t i a l water q u a l i t y impacts o f s t a b i l i z i n g t h e l e v e l o f B u f f a l o Lake with pumping water from the Red Deer R i v e r are i d e n t i f i e d i n Table 1.1. 1.1 T h i s impact assessment d e a l s with each of these i s s u e s . Water Q u a l i t y Assessment: Approach A v a i l a b l e water q u a l i t y data were compiled and analyzed term trends and f o r s p a t i a l and seasonal v a r i a b i l i t y . f o r long A computer model was c a l i b r a t e d with t h i s i n f o r m a t i o n and then used t o p r e d i c t changes i n l a k e water q u a l i t y with pumping. projection of average and c o n d i t i o n s i n the l a k e . extreme T h i s approach allows salinity and phosphorus The model a l s o permits e v a l u a t i o n of the system's s e n s i t i v i t y t o u n c e r t a i n assumptions such as groundwater i n t e r a c t i o n s and chemical solubility. The Water Q u a l i t y S i m u l a t i o n Program (WASP, V e r s i o n 4.14; Ambrose e t a l . , 1988) was s e l e c t e d from a review of a v a i l a b l e water q u a l i t y models. B u f f a l o Lake was Main and Secondary Bays divided (Figure i n t o two segments 1.1). This representing i s consistent with observed p a t t e r n s of mixing and c i r c u l a t i o n and measured gradients i n water q u a l i t y conveyance system Alix (Sloman, 1983; Norecol, i s r e p r e s e n t e d by one segment and 1984). The includes Parlby Creek, and Spotted Lakes and the c o n s t r u c t e d channel through lakes named Water i s t r a n s p o r t e d through segment 1 i n t o Secondary Bay (segment 2). Red Deer R i v e r water i s mixed "A" with and "B" Parlby to Alix Creek Lake. water before entering Secondary Bay. A d v e c t i v e flow along w i t h d i s p e r s i v e mixing occurs between Main and Secondary Bays. The outflow t o T a i l Creek i s i n the south-western c o r n e r o f Secondary Bay. Groundwater flows i n t o Main and Secondary Bays. The 20-year s i m u l a t i o n period was selected i n order t o s h o r t and l o n g term v a r i a b i l i t y i n l a k e l e v e l s . was p r o v i d e d i n S e c t i o n 3.5, Volume Two include The water balance and i n T e c h n i c a l Appendix I, and groundwater i n f l o w s i n S e c t i o n 3.6, Volume Two. HydroQuaI Table 1.1 P o t e n t i a l Water Q u a l i t y Impacts of S t a b i l i z i n g the Level of B u f f a l o Lake with Red Deer R i v e r Water. d i l u t i o n e f f e c t on l a k e s a l i n i t y levels changes t o phosphorus l o a d i n g e f f e c t s o f f r e s h e n i n g and a l t e r a t i o n s t o the phosphorus budget on a q u a t i c p l a n t and a l g a l growth a q u a t i c p l a n t and a l g a l growth impairment of water uses e f f e c t s of water withdrawal on the Red Deer R i v e r downstream impacts of B u f f a l o Lake water on the Red Deer R i v e r from o c c a s i o n a l s p i l l i n g p o t e n t i a l impacts on components of the proposed conveyance system ( A l i x and Spotted Lakes) i n f l u e n c e of the Dickson Dam and wastewater discharges t o the Red Deer R i v e r on the q u a l i t y o f water t o be withdrawn PROCESSES/EXCHANGES SEGMENT LOCATION INFLOW 1a Conveyance Channel to Alix Lake TOTAL PHOSPHORUS — sedimentation — sediment release — non—point source loadings 1b Alix Lake • r Parlby Creek 1c from Alix to Spotted Lake Spotted Lake and Parlby Creek 1d from Spotted Lake to Parlby Bay Parlby Bay GROUNDWATER Secondary Bay PRECIPITATION Tail Creek EVAPORATION (OUTFLOW) OUTFLOW TOTAL PHOSPHORUS — sedimentation — sediment release — atmospheric deposition — non—point source loadings Main Bay MODEL Figure SCHEMATIC 1.1 BUFFALO LAKE STABILIZATION PROJECT HydroQual Canada Ltd. 8 3 The groundwater i n f l o w was bounded by a low estimate o f 336 dam /y to a maximal 3 i n f l o w o f 6,252 dam /y. The upper l i m i t was d e r i v e d i n an i t e r a t i v e f a s h i o n based on s i m u l a t i o n s o f lake i o n chemistry and maximal t o l e r a b l e adjustments t o the s u r f a c e water balance and groundwater inflow. Parlby Creek i n f l o w Surface r u n o f f was s e t equal t o 25% o f t h e (Volume Two, Main Report - S e c t i o n 3.5). Three d i f f e r e n t pumping s c e n a r i o s were superimposed onto t h e water balances f o r the lower and upper groundwater i n f l o w s . The water balances f o r each pumping s c e n a r i o were provided i n S e c t i o n 3.5 o f the Volume Two, Main Report and i n T e c h n i c a l Appendix I o f t h i s volume. WER E n g i n e e r i n g L t d . provided volumes f o r Main and Secondary Bays with each water balance. These volumes were compared t o volumes simulated with WASP t o v e r i f y t h a t the model a c c u r a t e l y t r a c k e d t h e water balance (Figures 1.2, 1.3). The apparent l a r g e seasonal changes i n volume o f Main and Secondary Bays are due t o p r o j e c t i o n of i c e formation simulations. the lake. which must be accounted f o r i n water quality Roughly 0.5 m o f i c e i s formed over the s u r f a c e o f I c e begins t o form a t the end o f October, f o l l o w e d by a p e r i o d of r a p i d growth t o mid-January. The i c e melts over a t h r e e - week April. The r a t e s of i c e on a c t u a l observations of i c e period beginning formation and m e l t i n g thickness during Environment, a r e based winter field temperatures w i l l mid t o l a t e sampling notes). Snow of Buffalo cover and Lake (Alberta ambient annual i n f l u e n c e t h e r a t e o f formation and t h i c k n e s s . A t h i c k n e s s o f 0.5 m was considered average. Ice formation has a profound i n f l u e n c e on l e v e l s of d i s s o l v e d s a l t s ( i c i n g out e f f e c t ) . out In shallow systems, l i k e B u f f a l o Lake, icing can cause l a r g e seasonal f l u c t u a t i o n s i n l e v e l s o f d i s s o l v e d ions, and hence conductance. These l a r g e seasonal changes make i t d i f f i c u l t t o v i s u a l l y r e s o l v e long term trends i n conductance. HydroQual figure 1.2 BUFFALO LAKE WATER BALANCE - EXISTING CONDITIONS HydroQual Canada Ltd. • 300. SIMULATED—WASP PREuOICTED-WASP MAIN BAY 250. 200. 150. ^3 100. 50. 0. 82 83 84 85 86 87 88 69 | 70 | 71 | 72 I 73 | 74 | 75 [ 76 [ 77 | 78 | 79 | 80 | 8182 S3 84 86 87 88 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 70.0 SECONDARY BAY 60.0 50.0 _ 40.0 _ 30.0 _ o > 20.0 _ 10.0 _ 0.0 400. 85 TOTAL LAKE VOLUME 350. 300. 250. 200. a o > 5 150. 100. 50. 0. 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 I 88 Figure 1.3 BUFFALO LAKE WATER BALANCE - PUMPING SCENARIO 3 HydroQual Canada Ltd. 11 The ion q u a l i t y used i n the f o r groundwater, s u r f a c e water and model i s summarized i n Table 1.2. precipitation Average water q u a l i t y data f o r B u f f a l o Lake, P a r l b y Creek and the Red Deer R i v e r are presented i n Table 1.3. The model was c a l i b r a t e d to e x i s t i n g c o n d i t i o n s f o r a c o n s e r v a t i v e parameter (such as conductance or a d i s s o l v e d ion) u s i n g monitoring data for precipitation, diffuse model was used to s i m u l a t e h i s t o r i c lake c o n c e n t r a t i o n s f o r t o t a l phosphorus and to loadings, inflow quality groundwater). (Parlby The Creek, calibrated then p r e d i c t changes i n water q u a l i t y with s t a b i l i z a t i o n . pumping s c e n a r i o i s presented here. Only the high This scenario represents the worst case s i t u a t i o n because i t would cause the g r e a t e s t r e l a t i v e freshening and potential increase i n phosphorus loadings. impacts of the l e s s e r pumping s c e n a r i o s would be reduced Any relative t o the h i g h pumping s c e n a r i o . HydroQual 01 u c — id s 4J O O \ 3 CO i o rl C id id o in ^ H 3 -P U 0 S 3 ID C ft 13 13 o u •0 0 0 c ra II >!•* U vo id • 3 O c \ id co n a 01 3 O J -C \ a oi w E o •— CO ID IN CN o O O n rH n IN VO rH H rH O H H rH rH O O O O O o o JS h 0) w ft o a 0 < 1 i > > id 0 s z o e ID 0 a u 4-1 u 0 in 3 H IN to in CO IN T3 IU 0) •p v id (D rH 3 0 rH U c 0 •rH 0 ID o in in m •P 3 Id id •H 01 M 3 0 ID co in ft a> vo tt) rH 0 co " 0 id C cn > 10 rH >i 4J r< U 0 * TJ CD 3 • XI " 0 rH 01 0 c id 3 -P 0 rH 3 IN ID o ft •P en 01 \o co CO r- •- Ifl e ID id ai 3 •p -p u id id - P C • 0 -H u -H 0 < D m o m ID 01 m •P rl (1) .a g Q r< 3 O to U a < >i id E ai c •p 3 3 T J oi 01 id c H 0 id >i rH U A 300 mg/L that compared t o p r e s e n t A 95% r e d u c t i o n i n i n f l o w calcium l e v e l s was r e q u i r e d t o a c h i e v e an a c c e p t a b l e c a l i b r a t i o n . C o r r e c t i o n s t o t h e magnesium l e v e l s i n the P a r l b y Creek i n f l o w were also required t o achieve c a l i b r a t i o n l e v e l s were reduced by 70%. (Figure 2.6). Magnesium Although the l e v e l s o f magnesium i n P a r l b y Creek a r e lower than Secondary and Main Bays, magnesium has been shown t o c o p r e c i p i t a t e w i t h c a l c i u m (Noton, 1984). The f i n a l c a l i b r a t i o n s f o r calcium, magnesium and conductance were obtained w i t h a p p r o p r i a t e adjustments t o a l l i n f l o w q u a l i t y . This i n c l u d e d P a r l b y Creek, groundwater, and atmospheric p r e c i p i t a t i o n . Conductance was adjusted using factors magnesium from the r e l a t i o n s h i p (/xeq/L) = (0.9 t o 1.1) derived f o r calcium 100 times 2 +ve times the conductance (jiS/cm) (Standard Methods f o r t h e Examination of Water and Wastewater, 2 and o r -ve charges 1989). The 2+ f a c t o r s a r e (5/iS/cm)/(mg-Ca */L) and (19 . 5 juS/cm)/(mg-Mg /L) . The of ion loss calculated ratio by weight required t o achieve c a l i b r a t i o n i s 25% c a l c i u m , 10% magnesium and 65% carbonate. v a l u e s a r e i n good agreement These w i t h r e s u l t s from experiments on the p r e c i p i t a t i o n o f magnesium and c a l c i u m carbonate i n B u f f a l o water (Noton, 1984). These precipitates contained 35 Lake t o 40% c a l c i u m and 8 t o 10% magnesium by weight. The calculated annual average losses of c a l c i u m , carbonates over the 20 y e a r s i m u l a t i o n p e r i o d 4723 kg r e s p e c t i v e l y . This i s equivalent magnesium and are 2177, 591 and t o an annual l o s s o f 7490 kg o f c a l c i u m and magnesium carbonate (2.5:1.0:6.5, calcium: magnesium: carbonate by w e i g h t ) . HydroQual » UNCORRECTED CORRECTED OBSERVED MAIN BAY 300. _ 250. _ 1 \ cn 200. _ MAGNESIUM i E 150. _ 100. _ 50. 0. 71 | 72 | 73 | 74 69 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 85 | 86 1 87 88 | | SECONDARY BAY 300. _ 250. _ N i cn MAGNESIUM i E J 200. _ 150. _ 100. _ i 50. A' V 0. 69 71 | 72 | 73 | 74 100. 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 85 | 86 | 87 | 88 J PARLBY CREEK MAGNESIUM (mg/ 80. 60. 40. 20. r 0. v y v v—••"— 69 I 70 I 71 | 72 | 73 | 74 -igure 2.6 V -\A-.„~- ^-V—^-'X^ v '[- 75 | 76 | 77 | 78 [ 79 | 80 | 81 | 82 | 83 | 84 BUFFALO LAKE MAGNESIUM •/—V V 85 | 86 | 87 | 88 | HydroQual Canada Ltd. Model s i m u l a t i o n s of conductance w i t h i n f l o w q u a l i t y a d j u s t e d f o r p r e c i p i t a t i o n o f c a l c i u m and magnesium carbonate were i n reasonably good agreement w i t h the observed data ( F i g u r e 2.7) . Accounting f o r l o s s e s o f these This effect ions reduced i s most the predicted r a t e of s a l i n i z a t i o n . evident during the l a s t 10 years o f the simulation period. 2.1.2 The Calcite Saturation S a t u r a t i o n Index (SI) was used t o determine t h e tendency o f B u f f a l o Lake water t o p r e c i p i t a t e (Standard 1989) . Methods or d i s s o l v e calcium f o r the Examination o f Water carbonate and Wastewater, T h i s was necessary t o assess t h e impacts o f Red Deer R i v e r water on t h e i o n chemistry dissolution of calcium o f B u f f a l o Lake. carbonate may Conditions increase However, i f B u f f a l o Lake remains s u p e r s a t u r a t e d , lake favouring salinity. then t h e r a t e o f s a l i n i z a t i o n may not change and pumping w i l l have l i t t l e impact on lake s a l i n i t y . The SI i s determined from: SI = pH - pH where pH i s t h e measured equilibrium with calcium pH calcium carbonate and pHs carbonate bicarbonate concentrations. to s i s t h e pH o f water i n a t the e x i s t i n g c a l c i u m and A water i s o v e r s a t u r a t e d with r e s p e c t when pH>pH s (SI>0). The s a t u r a t i o n pH i s c a l c u l a t e d from: pH 2 s where pk = pk - pk + p[Ca *] + p[HC0 -] + 5 p f . 2 2 s 3 i s t h e second acid dissociation constant f o r carbonic a c i d a t t h e e x i s t i n g temperature, pk i s t h e s o l u b i l i t y product f o r s c a l c i u m carbonate coefficient a t t h e e x i s t i n g temperature and f i s an a c t i v i t y m f o r monovalent species (note n e g a t i v e l o g a r i t h m base 10; pk = - l o g k ) . 2 c a l c i u m and carbonate a r e i n moles/L. 2 that p stands f o r the The c o n c e n t r a t i o n s o f A t 25°C, pkj and pk s HydroQual EXISTING WITH PUMPING OBSFJWED 6.0 o \ MAIN BAY - E 5.0 _ 01 E 4.0 _ Ld O 2 < hO Z) Q 2 O O 3.0 — 2.0 - 1.0 — 0.0 69 I 70 I 71 I 72 I 73 I 74 I 75 [ 76 I 77 I 78 I 79 I 80 I 81 I 82 I 83 I 84 I 85 I 86 I 87 I 88 j SECONDARY BAY 6.0 E o \ 5.0 _ GO ^E 4.0 Ld O 2 3.0 — 2.0 - 2 1.0 — o o 0.0 < O nQ 69 | 70 [ 71 | 72 | 73 | 74 | 75 [ 76 | 77 PARLBY CREEK 2.0 E 1.8 - \ in 1.6 — o 1.4 E v ' UJ o 2 I 78 I 79 | 80 | 81 | 82 | 83 I 84 | 85 | 86 | 87 | 88 | 1.2 - 1.0 — < 0.8 — o 0.6 Q 2 O O 0.4 — 0.2 — 0.0 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 Figure 2.7 BUFFALO LAKE CONDUCTANCE 83 84 85 I 86 I 87 I 88 I HydroQual. Canada Ltd. 27 ( c a l c i t e ) equal 10.33 and 8.48 r e s p e c t i v e l y (Standard Methods f o r the Examination of Water and Wastewater, 1989). In B u f f a l o Lake, c a l c i u m i s p r e s e n t a t an average c o n c e n t r a t i o n of 10 mg/L mmol/L and b i c a r b o n a t e at 950 mg/L i o n i c s t r e n g t h of 0.04 the activity o r 15.6 mraol/L. or 0.23 At 25°C and an c a l c u l a t e d from a conductance of 2.5 mS/cm, coefficient Examination of Water and is 0.073 (Standard Wastewater, 1989). Methods The for the s a t u r a t i o n pH (PH ) i s : S pH s = 10.33 = - 8.48 + 3.60 + 1.81 + 5 (0.073) 7.62 which, a t pH 9.0, g i v e s a s a t u r a t i o n index o f : SI - pH - pH = 9.0 s - 7.62 = 1.38 The p o s i t i v e SI confirms t h a t B u f f a l o Lake i s s u p e r s a t u r a t e d respect to calcium and calcium carbonate magnesium and verifies carbonate is with that a net loss of required to achieve an a c c e p t a b l e c a l i b r a t i o n of the model f o r d i s s o l v e d i o n s . 2.2 Post-Development C o n d i t i o n A total of t h r e e pumping s c e n a r i o s a t two i n f l o w s were e v a l u a t e d with the model. high groundwater presented here. negative inflow at the potential groundwater Only the r e s u l t s from the maximum pumping scenario are These c o n d i t i o n s are expected t o have the g r e a t e s t impact on B u f f a l o Lake water q u a l i t y . The h i g h pumping s c e n a r i o w i l l cause the g r e a t e s t d i l u t i o n of B u f f a l o Lake water and r e s u l t i n more r e t u r n flow t o the Red The potential Deer R i v e r v i a T a i l Creek. impacts of i n c r e a s e d t o t a l phosphorus l o a d i n g s a l s o g r e a t e s t under the h i g h e s t pumping s c e n a r i o . the i n f l o w q u a l i t y was adjusted magnesium and c a l c i u m carbonates. are In a l l cases, (reduced) t o account f o r l o s s e s of HydroQual 28 The frequency and d u r a t i o n of pumping i n s c e n a r i o 3 i s e v i d e n t i n the q u a l i t y of P a r l b y Creek water (Figure 2.7). During pumping the quality Deer of Parlby Creek is similar to Red River water. Although some f r e s h e n i n g of B u f f a l o Lake w i l l occur over the first few years of pumping the lake w i l l continue t o become more s a l i n e over time. The degree of freshening w i l l depend on the volume pumped over the f i r s t few years t o achieve the design l e v e l . salinity w i l l decrease by 350 present l e v e l s ) i n response t o the added volume of Red water. However, the lake w i l l continue to become more s a l i n e over time. The because more rate of t o 500 /xS/cm (roughly Lake salinization will be river will be dilute s t a b i l i z e lake l e v e l s . water less 15 t o 20% than added of Deer R i v e r at over present time to The p e r s i s t e n t upward t r e n d i s apparent i n the s i m u l a t i o n of conductance and a l l c o n s e r v a t i v e ions considered (sodium, potassium, sulphate; F i g u r e s 2.2, Post-development c o n d i t i o n s i n the 2.3, lake w i l l 2.4). not greatly affect p r e c i p i t a t i o n of calcium and magnesium carbonates. River and Parlby Creek are both supersaturated to r a t e of m i n e r a l i z a t i o n may be calcium carbonate (Table 2.1). The pumping However, of a l l conditions carbonate w i l l reason, periods the continue and magnesium from s o l u t i o n . magnesium reduced the r a t e of s a l i n i z a t i o n these ions are not c o n s i d e r e d degree of River this lessening of inhibition of concerns, accounting for of and preferred have effectively I f l o s s e s of i n the pumping s c e n a r i o s , then will conservative carbonates was i n B u f f a l o Lake. freshening salinity be water For to and Deer calcium freshening. The calcium Red that removed of compensate f o r i o n l o s s e s f o r e v a l u a t i n g the pumping s c e n a r i o . of on because adjusted formation quality indicate t o be Deer respect decreased during The Red with reduced. losses approach Since freshening plant production are dissolved is to ions assessing the and major a more stabilization impacts. HydroQual 29 Table 2.1 CaLcite Saturation Indices for the Red Deer River Parlby Creek and Buffalo Lake # SI = pH - pH,; P*2 • pH, = pK, 10.33 (25°C); PARAMETER - 2 pK, + p[Ca *] pK, = 8.48 + ptHCO/l (calcite; • 5 pf m 25°C) SITE Red Deer River' 2 Buffalo Lake 2 Parlby Creek Main Bay Secondary Bay 8.1 8.0 9.2 9.1 Ca * Cmols/L) 0.0011 0.0012 0.0003 0.0003 HCO/ 40 mg/m /d (Shaw, 1989). Release r a t e s r e p o r t e d 2 l a k e s range from <1 t o 21 mg/m /d (Shaw, 1989; unpublished d a t a ) . These r a t e s are c a l c u l a t e d from the net change i n the l a k e t o t a l phosphorus c o n c e n t r a t i o n September. for Alberta A l b e r t a Environment, The r a t e s were not d e r i v e d over the p e r i o d May t o from mass balances o f lake t o t a l phosphorus budgets o r from d i r e c t measurements o f sediment release. I n t e r n a l l o a d i n g r a t e s were c a l c u l a t e d f o r B u f f a l o Lake f o r May t o September i n 1984, 1985 and 1986 ( A l b e r t a Environment, 1989). The net l o a d i n g of t o t a l phosphorus over t h i s p e r i o d ranged from 0.4 t o 0.7 2 2 mg/m /d (average o f 0.5 mg/m /d) . Rates c o u l d not be obtained from the m o n i t o r i n g data c o l l e c t e d i n other y e a r s . B u f f a l o Lake i s shallow and w e l l mixed and a l s o w e l l oxygenated. Observed data a l s o suggest that i t may n o t go anoxic even under i c e cover. HydroQual 34 M o b i l i z a t i o n o f phosphorus from r e d u c t i o n o f f e r r i c non-phosphorus complexes w i l l not occur under these c o n d i t i o n s . Phosphorus r e l e a s e was measured on sediment cores c o l l e c t e d i n 1989 (Alberta Environment, p r e l i m i n a r y d a t a ) . The cores were incubated i n B u f f a l o Lake water u n d i l u t e d and d i l u t e d with Red Deer R i v e r water. Changes i n t o t a l phosphorus were monitored data over time t o 2 derive release rates. The r a t e s ranged from 0 t o 5 mg/m /d. are preliminary and must be interpreted with These caution. However, the v a l u e s a r e c o n s i s t e n t with r a t e s obtained from t h e mass balance calculations and r a t e s r e p o r t e d f o r other shallow Alberta lakes. 2 A r a t e of 0.8 mg/m /d was used i n the model t o simulate sediment r e l e a s e s from May t o September. T h i s value i s not the "net" o f a l l sources and s i n k s i t i s a gross r a t e . differentiated However, and sedimentation we b e l i e v e t h i s rate In t h e model, l o a d i n g s a r e i s considered i s reasonable separately. i n light of the a v a i l a b l e i n f o r m a t i o n on i n t e r n a l l o a d i n g i n B u f f a l o Lake and other shallow lakes i n A l b e r t a . account f o r roughly With t h i s r e l e a s e r a t e , the sediments 50% o f t o t a l phosphorus l o a d i n g s t o B u f f a l o Lake. Monthly average data f o r t o t a l phosphorus were used to simulate Parlby i n f l o w q u a l i t y . T o t a l flow from d i f f u s e sources was 25% o f the (Volume Two, Main Report Parlby Creek flow Diffuse surface i n f l o w was assigned - S e c t i o n 3.5). t h e same q u a l i t y used f o r Parlby Creek. The model was c a l i b r a t e d t o observed coefficient. total day. data with the sedimentation The sedimentation c o e f f i c i e n t phosphorus c o n c e n t r a t i o n , expressed Seasonal changes e x p l i c i t l y considered. in algal production. i s a function o f the as a percent i n t h e sedimentation Higher r a t e s a r e expected rate, l o s t per were n o t f o l l o w i n g peaks Phosphorus i s taken up by t h e algae which HydroQuaI 35 then d i e and s e t t l e out o f t h e water column. This removes phosphorus from the water column. A s e d i m e n t a t i o n r a t e o f 0.3%/d was r e q u i r e d t o c a l i b r a t e the model t o observed data (Figure 3.1). The seasonal dynamics i s apparent i n the s i m u l a t i o n . increase i n winter (concentrated as a result nature o f phosphorus T o t a l phosphorus l e v e l s of the i c i n g out effect from i c e formation) and over summer due t o sediment r e l e a s e and phosphorus l o a d i n g s from s u r f a c e r u n o f f and atmospheric deposition. first The l a r g e r peaks i n Secondary Bay t h a t appear i n the few y e a r s of the simulation volume and lower l a k e l e v e l . is formed each year formation (0.5 has a g r e a t e r m) . lake When t h e l a k e concentrating such as t o t a l phosphorus. the are a result effect level volume determines on d i s s o l v e d t h e seasonal amplitude patterns in dissolved A o f 0.3%/d f o r an i n - l a k e sedimentation rate i s low, i c e salts The volume o f i c e formed i n r e l a t i o n t o observed and s i m u l a t e d concentration o f the smaller I n the model, the same volume of i c e i n both t h e salts. total 2 o f 0.07 mg/L i s equal t o 0.6 mg/m /d. phosphorus Sedimentation 2 r a t e s i n o t h e r A l b e r t a l a k e s t y p i c a l l y range from 1 t o 5 mg/m /d o r 1 t o 2% o f t h e t o t a l phosphorus c o n c e n t r a t i o n zone (E. Prepas, approximately pers. equal comm) . t o t h e near The depth i n the trophogenic trophogenic o f 2.4 m zone is (2.4 times t h e average s e c c h i depth which o f t e n exceeds 1.0 m; A l b e r t a Environment Data, NAQUADAT). I n c r e a s i n g the sedimentation r a t e w i l l remove more phosphorus from the water column. rate i s changed T h i s i s c l e a r l y e v i d e n t when the rates are s l i g h t l y lakes. However, the t o t a l phosphorus c o n c e n t r a t i o n lower than that observed for i s s u b s t a n t i a l l y l e s s than t h a t observed i n o t h e r lakes. sedimentation from 0.25 t o 0.3% p e r day ( F i g u r e 3.1). These other Alberta i n B u f f a l o Lake similar saline L e v e l s o f t o t a l phosphorus i n these l a k e s range from 0.07 t o 2.6 mg/L (Table 3.1). T h i s suggests t h a t phosphorus i n p u t s t o HydroQual CASE 1: 0.25 CASE 2: 0.30 OBSERVED MAIN BAY 0.20 c? \ Cn J, % /d X /d 0.18 0.16 01 Z3 0.12 OR 0.14 0.10 X 0_ 0.0B 00 oX 0_ _1 0.06 0.04 0.02 0.00 o 69 | 70 | 71 SECONDARY BAY 0.20 cr \ I 72 [ 73 I 74 | 75 | 76 [ 77 [ 78 [ 79 | 80 | 81 I 82 | 83 I 84 | 85 | 86 | 87 | 88 | 0.18 0.16 0.14 OS PH OR 00 X Q_J O 0.12 0.10 0.08 0.06 0.04 0.02 0.00 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 ] 77 | 78 1.0 \ I 79 | 80 | 81 | 82 I 83 | 84 | 85 | 86 | 87 | 88 | PARLBY CREEK 0.9 cn E 0.8 0.7 OR 00 X EL to O X D_ 0.6 0.5 0.4 0.3 0.2 0.1 O h- 0.0 69 Figure I 70 | 71 I 72 [ 73 | 74 | 75 | 76 | 77 [ 78 | 79 | 80 | 81 | 82 | 83 | 84 ] 85 | 86 | 87 | 88 3.1 BUFFALO LAKE TOTAL P H O S P H O R U S HydroQual Canada Ltd. Table 3.1 Levels of Total Phosphorus and Chlorophyll a in Alberta Saline Lakes Conductance TP (mg/L) Peninsula 11.4 3.5 Red Deer 10.3 1.0 Fluevog 8.5 2.2 Miquelon 6.5 0.13 White's 5.1 4.2 Haunted 2.8 0.07 Joseph 2.7 0.29 34 Wappa 2.6 1.4 30 Main Bay 2.3 0.07 Secondary Bay 2.1 0.06 1.8 0.33 Buffalo " Eagle Chla (ng/L> J 32 Postill 1.7 2.6 62 Camp 1.7 0.19 46 Cooking (east) 1.4 0.22 84 Looking Back 1.4 0.29 86 Cooking (west) 1.4 0.26 90 Mink (north) 1.3 0.02 5 Mink (south) 1.3 0.02 5 Bierhuizen and Prepas, 1985 this study Goudey and Hamilton, 1988 38 Buffalo Lake may actually other mechanism is concentrations. be lower than affecting A higher sedimentation t o t a l loadings were i n c r e a s e d . p r o j e c t e d or t h a t some water column phosphorus r a t e would be r e q u i r e d i f A 50% i n c r e a s e i n sediment r e l e a s e i n c r e a s e d the lake's t o t a l phosphorus c o n c e n t r a t i o n by roughly 20% (Figure 3.2) . A s i m i l a r adjustment to the sedimentation r a t e would be r e q u i r e d to r e s t o r e the c a l i b r a t i o n . internal loading (10,000 kg/y) is However, the estimate f o r considered reasonable and c o n s i s t e n t with p u b l i s h e d data on phosphorus c y c l i n g i n l a k e s . Phosphorus has magnesium carbonate. calcite been formation concentrations shown to High but c o p r e c i p i t a t e with phosphorus coprecipitation (ref. cited readily i n K l e i n e r , 1988). form s t a b l e s o l i d s with phosphates. calcium concentrations and inhibit occurs at lower Calcium will also A d d i t i o n of lime f o r example, i s a p o t e n t i a l method f o r removing phosphate from the water column. It is interesting to note hydroxyapatite (Ca (P0 ) (OH) Buffalo (11.7 Lake 5 4 that the solubility product of ) i s exceeded f o r the c o n d i t i o n s i n 3 mg/L calcium, 41 phosphorus g i v e s a Kj = 10" 0 pH 9.1 compared t o K 55 s0 and 0.07 mg total f o r hydroxyapatite of 10' '; Snoeyink and Jenkins, 1980). However, t h i s i s not l i k e l y a significant mechanism controlling phosphorus levels Lake. process precipitate formation ( n u c l e a t i o n , phase The transformation, of crystal growth) scope of t h i s work (Snoeyink i s more complex and J e n k i n s , 3.2 I n f l u e n c e of Pumping 3.2.1 Red Deer R i v e r Phosphorus L e v e l s and in Buffalo beyond the 1980). Phosphorus l e v e l s i n the Red Deer R i v e r are a major concern because of the potential for increasing loadings pumping to s t a b i l i z e lake l e v e l s . B u f f a l o Lake with The d i s c h a r g e from the Red to Deer Sewage Treatment P l a n t i s a major source of phosphorus l o a d i n g s t o the Red Deer R i v e r (Table 3.2) . Discharge volume and q u a l i t y were HydroQual CASE 1: 10,000 kg/year CASE 2: 15,000 kg/year OBSERVED 0.20 MAIN BAY 0.18 0.16 0.14 CO z> or 0.12 Cl 00 o 0.06 0 1 X a_ _i 0.10 0.08 0.04 0.02 0.00 o I- 69 I 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 [ 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | SECONDARY BAY 69 70 71 1.0 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PARLBY CREEK 0.9 0.8 oo z> ce 0.7 0.6 0 1 0.5 00 o 0.3 o. X CL 0.4 0.2 0.1 2 o 0.0 69 70 71 Figure 3.2 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 BUFFALO LAKE TOTAL PHOSPHORUS HydroQual Canada Ltd. used t o q u a n t i f y n u t r i e n t l o a d i n g s from t h i s p l a n t . The c a l c u l a t e d r i v e r phosphorus c o n c e n t r a t i o n (complete mixing) i s roughly equal to or g r e a t e r than the c o n c e n t r a t i o n measured f o u r m i l e s above the Content B r i d g e . Uptake of phosphorus by likely f o r the accounts growing a q u a t i c p l a n t s d i f f e r e n c e s between the c a l c u l a t e d and measured t o t a l phosphorus c o n c e n t r a t i o n s d u r i n g August, September and October (Table 3.2). greatest i n the phosphorus to The growth of a q u a t i c p l a n t s i s g e n e r a l l y months of August and bottom sediments phosphorus c o n c e n t r a t i o n s w i t h the in September. the river Adsorption may also of reduce i n c r e a s i n g d i s t a n c e downstream of discharge. M o n i t o r i n g data from the pumping months of May sites (Joffre analyzed Bridge, to e s t a b l i s h four miles average Red Above t o September at Content Bridge) two were Deer R i v e r c o n c e n t r a t i o n s e v a l u a t i o n o f pumping impacts on B u f f a l o Lake q u a l i t y . The for four m i l e s above Content Bridge s i t e i s near the proposed withdrawal f o r B u f f a l o Lake. Levels of J o f f r e Bridge i s f u r t h e r upstream. total phosphorus, total dissolved phosphorus or orthophosphorus were not s i g n i f i c a n t l y d i f f e r e n t among years at the J o f f r e Bridge s i t e . at site However, annual changes i n phosphorus l e v e l s four miles above Content Bridge d i f f e r e n t amongst years (Appendix I I A ) . T h i s apparent discrepancy was the were significantly examined i n g r e a t e r d e t a i l . D i s c u s s i o n s w i t h A l b e r t a Environment personnel r e v e a l e d t h a t up to t h r e e d i f f e r e n t l a b o r a t o r i e s analyzed the samples oyer the p e r i o d of r e c o r d . The l a b o r a t o r i e s were 1982 1983 Lab unknown - mid 1984-1985 1984 A l b e r t a Environment ( V e g r e v i l l e ) Chemex HydroQual 42 Phosphorus data significantly from the different site above amongst the Content Bridge laboratories. were This was p r i m a r i l y a r e s u l t of the e l e v a t e d readings i n 1982 (Appendix). Similar r e s u l t s were not f o r data collected at Bridge (Appendix). obtained When 1982 data are omitted, no Joffre significant d i f f e r e n c e s were d e t e c t e d amongst " l a b o r a t o r i e s " or years over the s i x month pumping i n t e r v a l . records were excluded For t h i s reason, the 1982 phosphorus from a l l f u r t h e r s t a t i s t i c a l analyses of Red Deer R i v e r data f o r s p a t i a l and seasonal d i f f e r e n c e s . A two-way a n a l y s i s of v a r i a n c e was performed t o compare phosphorus c o n c e n t r a t i o n s among months and between s i t e s . detectable d i f f e r e n c e s between the two There were no sites. These results suggest t h a t a s s i m i l a t i o n of phosphorus i n the r i v e r i s too low t o r e s o l v e with present i n t e n s i t y of sampling. T o t a l phosphorus and total significant d i s s o l v e d phosphorus patterns (Figure both 3.3). displayed Phosphorus concentrations seasonal generally d e c l i n e d over the pumping i n t e r v a l but l a t e r i n c r e a s e d i n October. Seasonal d i f f e r e n c e s i n orthophosphorus above Content Bridge, were analyzed using a one-way analysis of variance (sampling orthophosphorus a t J o f f r e Bridge was d i s c o n t i n u e d i n 1984). total phosphorus and total dissolved phosphorus, d i f f e r e n c e s among pumping months were detected. concentrations significant Orthophosphorus a l s o d e c l i n e d d u r i n g the pumping months but i n c r e a s e d i n October (Figure 3.2.2 for As f o r then 3.4). Conveyance System The proposed conveyance system w i l l i n c l u d e a p i p e l i n e , c a n a l involve some c h a n n e l i z a t i o n of passes through two the small waterbodies and existing creek. The route ("A" "B", Figure 1.0, and Table 3.3) , A l i x Lake and enters B u f f a l o Lake through P a r l b y Creek. HydroOual 1 1 1 1 1 1 1 O 2 8 x •L> 1 u 1 r HZH - o * 1 CO o o o d 1 1 CD O O CO O d bJ 1 i i i i CO o o o o d o o d O g Q_ Q CD o o o Ld o u Ld > cr Ld > cr O m 1 Ld Ld < O if) Ld Q - Ld cr n O J 1 L-m HJJ<« — 1 h-l o - -LD - o co d CM d d d i Ld cr 1 ZD o d 0.05 0.04 0.03 Q_ O 0.02 o 0.01 i 1 000 MAY JUN JUL AUG SEP OCT MONTH FIGURE 3 . 4 RED DEER RIVER: OP 4 MILES ABOVE CONTENT BRIDGE HydroQual Canada Ltd. 45 Table 3.3 Morphometric Data on the Conveyance Route PARAMETER LAKE 2 A B Alix' Spotted 11 10 130 828 Volume (danf ) 83 75 650 1200 Mean Depth 0.7 0.7 2.0 1.5 . Area (ha) 1 estimated from preliminary site plans derived from Ducks Unlimited hydrographic survey 46 Spotted Lake i s p e r i o d i c a l l y backflooded f o r a g r i c u l t u r a l purposes and t o c r e a t e s u i t a b l e f i s h spawning h a b i t a t . Spotted Lake w i l l be flooded i n May and allowed t o d r a i n from the end of May t o June 15. The p r o j e c t g u i d e l i n e s suggest t h a t no s p e c i a l procedures w i l l be taken to pass water through t o B u f f a l o Lake d u r i n g b a c k f l o o d i n g . Loss of phosphorus i n the pumped Red Deer R i v e r water w i l l occur probably d u r i n g transit through t h e conveyance system. phosphorus w i l l be l o s t i n f a s t - f l o w i n g s e c t i o n s . Little Any removal by p l a n t s i s only temporary s i n c e the phosphorus i s r e l e a s e d f o l l o w i n g 1984). S e t t l i n g of p a r t i c u l a t e phosphate w i l l occur i n standing water. p l a n t death (discussed i n Noton, The r a t e and amount l o s t i s determined by the residence time. In t h i s respect, removal of phosphorus i s only expected i n A l i x Lake and Spotted Lake d u r i n g backflooding. Unlike particulate phosphorus, most a l l of the d i s s o l v e d phosphorus w i l l be t r a n s p o r t e d t o B u f f a l o Lake. There are water q u a l i t y data f o r f o u r s i t e s on P a r l b y Creek from upstream of the o u t l e t from A l i x Lake t o the Hwy Spotted Lake. Annual orthophosphorus amongst differences concentration the s i t e s . Data in were from 21 c r o s s i n g below total generally the Hwy 21 phosphorus not site and significant were, however, s i g n i f i c a n t l y d i f f e r e n t from the upstream s i t e s , probably because o f the i n f l u e n c e s of Spotted Creek which joins Spotted quality f o r Spotted Creek Lake. available. No I t should be or flow data noted t h a t e q u a l l y d i s t r i b u t e d amongst months. P a r l b y Creek i n are t h e observed data are not I n i t i a l samples were c o l l e c t e d d u r i n g the proposed pumping months. More r e c e n t l y , samples were taken only a t the beginning of the pumping p e r i o d . No r e a l c o n s i s t e n t seasonal v a r i a b i l i t y (monthly) was observed i n orthophosphorus c o n c e n t r a t i o n s a t each o f the four s i t e s on P a r l b y Creek. The data f o r the Hwy significant trends phosphorus. The were 50 s i t e was detected significant monthly for h i g h l y v a r i a b l e and total differences and no dissolved in total and HydroOual 47 d i s s o l v e d phosphorus a t Hwy 21 are a l s o l i k e l y due t o the i n f l u e n c e of Spotted Creek and the Spotted Lake area. Analyses o f the d i f f e r e n c e s between phosphorus c o n c e n t r a t i o n s a t Highway 50 and Highway 21 were done t o investigate p r o c e s s i n g i n the lower reaches of P a r l b y Creek. historical Only the months of May t o August were c o n s i d e r e d as these are the o n l y times i n which backflood occur. The irrigation of hay crops i n f l o w c o n c e n t r a t i o n was i n Spotted Lake might taken t o be those a t Highway 50, and the outflow t o be those a t Highway 21. For those days upon which both s i t e s were sampled, the d i f f e r e n c e between the i n f l o w and outflow c o n c e n t r a t i o n was taken. These data were then averaged over months w i t h i n each year, or over y e a r s w i t h i n each month. In a l l y e a r s except 1988 ( f o r which t h e r e was o n l y one sample) and a l l forms o f except phosphorus orthophosphorus i n 1983 "the average d i f f e r e n c e between the upstream and downstream s i t e (Table 3.4) p o s i t i v e i n d i c a t i n g a net l o s s of n u t r i e n t between the two Likewise, t h e r e was (Table 3.5) a net loss was sites. of phosphorus w i t h i n a l l months between the two s i t e s . The h i g h average l o s s e s d e r i v e d f o r J u l y are due t o e l e v a t e d phosphorus l e v e l s d e t e c t e d i n J u l y and 23 i n 1986. The reason 10 f o r these h i g h v a l u e s i s not known. Spotted Lake i s not b a c k f l o o d e d f o r i r r i g a t i o n i n a l l y e a r s and no r e c o r d s are kept w i t h r e s p e c t t o the y e a r s i n which i t was f l o o d e d , so i t i s not p o s s i b l e t o i n f e r the e f f e c t of b a c k f l o o d i n g per se on phosphorus c o n c e n t r a t i o n s . Comparing the data from the s i t e s upstream (Hwy (Hwy 21) 50) and downstream o f Spotted Lake c l e a r l y demonstrated t h a t phosphorus i s removed i n the Spotted Lake a r e a . In l i g h t o f the r e s u l t s from the a n a l y s i s o f a l l s i t e s on P a r l b y Creek, however, i t was not p o s s i b l e to derive a satisfactory Processing of phosphorus loss explicitly c o n s i d e r e d i n the model. along coefficient the conveyance for the route model. was not However, changes i n B u f f a l o Lake t o t a l phosphorus were examined i n response t o d i f f e r e n t l e v e l s of t o t a l phosphorus i n Red Deer R i v e r water. T h i s range c o v e r s HydroQual 48 Table 3.4 Loss of Phosphorus (mg/L) in the Spotted Lake Area of the Parlby Creek Conveyance Systems: Data Analyzed by Year 2 PHOSPHORUS FRACTION (mg/L) YEAR TDP OP TP 1982 0.046 0.024 0.049 1983 0.003 -0.003 0.030 1985 0.393 0.254 0.425 1986 0.015 0.015 0.011 1987 0.062 0.067 0.089 1988 (n = 1) -0.162 -0.152 -0.236 Mass loss equals the difference between the upstream (Hwy 50) and downstream (Hwy 21) sites TDP, total dissolved phosphorus; OP, ortho-phosphorus; TP, total phosphorus Additional information from the statistical analysis is presented in the Appendix. 49 Table 3.5 Loss of Phosphorus (mg/L) in the Spotted Lake Area of the Parlby Creek Conveyance System: Data Analyzed by Month 2 PHOSPHORUS FRACTION (mg/L) MONTH TDP OP TP MAY 0.013 0.005 0.010 JUNE 0.034 0.015 0.046 JULY 0.349 0.235 0.377 AUGUST 0.035 0.005 0.027 1. Mass loss equals the difference between the upstream (Hwy 50) and downstream (Hwy 21) sites 2. TDP, total dissolved phosphorus; 3. Additional information from the statistical analysis is presented in the Appendix. OP, ortho-phosphorus; TP, total phosphorus 50 what could be considered optimal t o worst case c o n d i t i o n s (no processing) . 3.3 S t a b i l i z a t i o n impacts on B u f f a l o Lake T o t a l Phosphorus The average Red Deer R i v e r t o t a l phosphorus c o n c e n t r a t i o n i s 0.06 mg/L (from 1982 on; May t o October p e r i o d ) . the e l e v a t e d phosphorus c o n c e n t r a t i o n s scenario. T h i s value includes from 1982 f o r a worst case T h i s c o n c e n t r a t i o n was used i n the model s i m u l a t i o n s o f post-development conditions. A lower total phosphorus c o n c e n t r a t i o n (0.02 mg/L) was a l s o examined i n order t o account f o r p r o c e s s i n g along the conveyance route. Pumping Red Deer R i v e r water c o n t a i n i n g 0.06 mg/L t o t a l phosphorus had l i t t l e e f f e c t on i n - l a k e c o n c e n t r a t i o n s . The t o t a l phosphorus c o n c e n t r a t i o n o f Parlby Creek a t the Hwy 21 s i t e ranges from 0.1 t o 0.2 mg/L. pumping Hence, some d i l u t i o n of Parlby Creek water occurs (Figure attenuates resulted 3.5, Parlby the annual from Creek, broken l i n e ) . fluctuations changing lake in total levels. The during Pumping also phosphorus that increase in total phosphorus l e v e l s over the l a s t t e n years o f the s i m u l a t i o n p e r i o d i s l a r g e l y due t o the decrease i n lake e l e v a t i o n over t h i s p e r i o d , for the e x i s t i n g c o n d i t i o n . Reducing the l e v e l o f t o t a l phosphorus i n Red Deer R i v e r water from 0.06 t o 0.02 conveyance mg/L route t o account had l i t t l e f o r some effect processing along on c o n c e n t r a t i o n s the of t o t a l phosphorus i n B u f f a l o Lake (Figure 3.6). Phosphorus budgets f o r the e x i s t i n g s t a b i l i z a t i o n are presented condition and following i n Table 3.6. Surface i n f l o w (with and without pumping) and d i f f u s e l o a d i n g s , are averages o f the annual loading over the e n t i r e 20 year simulation period. Total phosphorus i n the Red Deer R i v e r water accounted f o r only 1 t o 2% of the t o t a l phosphorus l o a d i n g s t o B u f f a l o Lake (Table 3.6). HydroQual EXISTING CONDITION WITH STABILIZATION OBSERVED LT => or o X o_ CO o X 0_ 2 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 o MAIN BAY k*' 4 1 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 SECONDARY BAY 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 1.0 PARLBY CREEK 0.9 0.8 0.7 0.6 or 0 1 0.5 LO O 0.3 D_ a. _i c i— 0.4 0.2 0.1 0.0 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | Figure 3.5 BUFFALO LAKE TOTAL PHOSPHORUS HydroQual Canada Ltd. RIVER TP 0.02 RIVER TP 0.06 OBSERVED 0.20 mg/L mg/L MAIN BAY 0.18 \ E 0.16 0.14 Ul 0.12 ZD (Z 0.10 Io 0.08 X D_ 0.04 a_ to o 0.06 _J 0.02 1< — 0.00 o 69 70 0.20 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 SECONDARY BAY 0.18 ^E 0.16 tn tr 0.12 o x CL 1/1 o 0.14 0.10 0.08 0.06 X Q. 0.04 _l 0.02 o 0.00 69 I 70 I 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 1.0 82 83 84 85 86 87 88 PARLBY CREEK 0.9 ^E 81 0.8 0.7 to CE 0 X Q_ 01 O X 0. -J < h- 0.6 0.5 0.4 0.3 0.2 0.1 0.0 o 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 Figure 3.6 I 81 | 82 | 83 I 84 I 85 I 86 I 87 I 88 I BUFFALO LAKE TOTAL P H O S P H O R U S HydroQual Canada Ltd. Table 3.6 Phosphorus Budget f o r B u f f a l o Lake. EXISTING POSTDEVELOPMENT 1 *g/y % 625 3 625 3 Atmospheric D e p o s i t i o n 2 737 15 2 737 14 Sediment Release 10 000 53 10 000 52 Surface 3 194 17 3 194 17 2 190 12 2 190 11 - - 475 2 SOURCES: kg/y % t Groundwater Inflow Non-point Sources Red Deer R i v e r Water TOTAL 3 18 745 19 221 18 150 18 500 LOSSES: Sedimentation Outflow TOTAL NET (SOURCES-LOSSES) - 154 18 150 18 654 596 567 pumping s c e n a r i o 3 h i g h groundwater i n f l o w (6 252 dm /y) h i g h t o t a l phosphorus c o n c e n t r a t i o n i n Red Deer R i v e r water (0.06 mg/L) 3 Losses of t o t a l phosphorus occur with s t a b i l i z a t i o n . i n the outflow are a l s o expected ;to However, the annual average net loadings (sources-losses) f o r the e x i s t i n g are not significantly and post-development c o n d i t i o n s different. stabilization will concentrations i n B u f f a l o Lake. not greatly Based on model simulations, affect total phosphorus HydroO.ua l 55 4.0 NITROGEN Nitrogen organic i s an essential plant nutrient. forms of n i t r o g e n present only u t i l i z e ammonium and n i t r a t e . low inorganic and i n s u r f a c e waters, p l a n t s Of the can Although l e v e l s o f n i t r a t e are i n many A l b e r t a l a k e s d u r i n g the open water season, l e v e l s of nitrate i n s u r f a c e waters are g e n e r a l l y high enough t h a t they not l i m i t a q u a t i c p l a n t and a l g a l growth. do P l a n t growth i s u s u a l l y l i m i t e d by phosphorus. The r a t i o of n i t r o g e n t o phosphorus i s a r e l a t i v e measure of availability of each nutrient. The relative n i t r o g e n and phosphorus i n f l u e n c e s the nature of p l a n k t o n i c communities. Nitrogen f i x i n g bluegreen the availability of algal algae f o r example, may be favoured under c o n d i t i o n s of n i t r o g e n l i m i t a t i o n (low TN:TP r a t i o ) . Bluegreen algae unsightly can surface cause t a s t e and odour problems and scums impair that can Bluegreen blooms appear t o occur r a t i o i s l e s s than 29 produce recreational uses. more f r e q u e n t l y when the TN: TP ( c a l c u l a t e d from TN and TP c o n c e n t r a t i o n s i n mg/L). T o t a l n i t r o g e n t o t o t a l phosphorus r a t i o s were c a l c u l a t e d from the available nitrate data and on total nitrite B u f f a l o Lake and nitrogen nitrogen) i n the Red (total and Kjeldahl nitrogen total phosphorus Deer R i v e r at the m i l e s above the Content Bridge site plus levels located (data summarized i n Table in four 1.3). The TN:TP r a t i o of B u f f a l o Lake, f o r the May t o October p e r i o d , has been on average between 41 and Secondary Bays). The TN:TP r a t i o i n the Red large seasonal 37 Deer R i v e r (Main and i s h i g h l y v a r i a b l e because of changes i n t o t a l phosphorus. TN:TP r a t i o over the same p e r i o d i s 19. Creek i s r o u g h l y 11 (Hwy 50 s i t e ) . However, the average The TN:TP r a t i o i n P a r l b y The lower TN:TP r a t i o i n P a r l b y Creek compared t o B u f f a l o Lake and the Red Deer R i v e r i s due to a higher A total total phosphorus concentration. reduction in HydroQual 56 phosphorus levels in Parlby Creek will likely result from c h a n n e l i z a t i o n and from f l u s h i n g of the conveyance system with Red Deer R i v e r water. T h i s w i l l i n c r e a s e the TN:TP r a t i o . These r e s u l t s and the f a c t t h a t pumping w i l l total not g r e a t l y a f f e c t phosphorus l e v e l s i n B u f f a l o Lake i n d i c a t e t h a t the TN:TP r a t i o w i l l not be a l t e r e d . Conditions i n B u f f a l o Lake do not on average favour development of bluegreen a l g a l blooms. Major s h i f t s i n the s t r u c t u r e o f the p l a n k t o n i c community a r e thus not expected t o occur f o l l o w i n g s t a b i l i z a t i o n o f the l a k e level. HydroQual 57 5.0 ALGAL BIOMASS Phosphorus i s the n u t r i e n t t h a t most o f t e n l i m i t s growth of algae i n freshwater systems. In B u f f a l o Lake, however, a l g a l growth i s a l s o l i m i t e d by the h i g h s a l i n i t y . e f f e c t s of h i g h s a l i n i t y saline Alberta lakes on A r e l a t i o n s h i p f o r the a l g a l growth i s w e l l (Bierhuizen established Prepas, 1985). and and (1983) Trew phosphorus (Mg/L) and derived a relationship for Productivity measured as c h l o r o p h y l l a decreases w i t h i n c r e a s i n g Prepas limiting salinity. between total c h l o r o p h y l l a (/J-g/L) f o r A l b e r t a l a k e s . The equation f o r p r e d i c t i n g c h l o r o p h y l l i s : CHLpnj,, 0 . 0 4 7 x TP = 1 - 57 The decrease i n p r e d i c t e d the i n h i b i t i n g e f f e c t s of h i g h s a l i n i t y PREDICTED = ? l e v e l s of c h l o r o p h y l l a r e s u l t i n g from > 1 x 1 0 . 4 x COND i s given by: ,.72 OBSERVED where COND i s the 1985) . conductance i n (i.S/cm (Bierhuizen and Prepas, Conductance i s a measure of t o t a l d i s s o l v e d s o l i d s and related to is salinity. The c a l c u l a t e d c h l o r o p h y l l l e v e l s i n B u f f a l o Lake should range from 32 t o 39 /ig/L f o r t o t a l phosphorus c o n c e n t r a t i o n s fj-g/L. These inhibiting chlorophyll predicted levels do not e f f e c t s of h i g h s a l i n i t y . levels for approximately 9 /ig/L. average c h l o r o p h y l l salinity This 5 to of 0 . 0 6 3 to 0 . 0 7 0 into Correcting inhibition value l e v e l s of take account these value of i s i n good agreement w i t h the 7 /xg/L gives measured Secondary Bays over the l a s t 10 y e a r s of m o n i t o r i n g . a the predicted i n Main and T h i s suggests t h a t the h i g h s a l i n i t y of B u f f a l o Lake i s l i m i t i n g a l g a l growth. HydroQual 58 S t a b i l i z a t i o n o f B u f f a l o Lake with Red Deer R i v e r water w i l l reduce the conductance by 350 t o 500 /iS/cm pumping. i n the f i r s t few years o f T o t a l phosphorus l e v e l s w i l l be decreased by roughly 20% over t h i s p e r i o d . Based on t h i s information, chlorophyll levels were p r e d i c t e d with the e m p i r i c a l models f o r the p o s t - s t a b i l i z a t i o n conditions. The r e s u l t s i n d i c a t e t h a t l e v e l s o f c h l o r o p h y l l a w i l l not change i n Main Bay but are increased by 1 yxg/L i n Secondary Bay (Table 5.1). This increase i s within the range of natural v a r i a b i l i t y and would not be n o t i c e d . In summary, s t a b i l i z a t i o n existing i s expected t o have l i t t l e l e v e l s of a l g a l biomass i n B u f f a l o Lake. impact on I t should be noted that although some freshening o f B u f f a l o Lake w i l l occur over the f i r s t four years of pumping, the lake w i l l continue more s a l i n e over time. In t h i s respect, t o become i t i s conceivable that l e v e l s of a l g a l biomass may a c t u a l l y d e c l i n e over time due t o the i n c r e a s i n g i n h i b i t o r y e f f e c t s o f high l e v e l s o f d i s s o l v e d s a l t s . HydroQual Table 5.1 Predicted Levels of Algal Biomass in Buffalo Lake Before and After Stabilization' Predicted Chlorophyll Levels Pos t-D eveIopment Existing Main Bay 9 9 Secondary Bay 8 9 1. based on the equations derived for Alberta Lakes by Prepas and Trew (1985) and Bierhuizen and Prepas (1985). 60 6.0 MACROFHYTES 6.1 E x i s t i n g Conditions The d i s t r i b u t i o n o f a q u a t i c macrophytes i n B u f f a l o Lake, and t h e prominent environmental factors controlling them have been thoroughly d e s c r i b e d by Haag and Noton (1981). B i r d (1981) b r i e f l y summarized From the biology o f most species. this detailed information, coupled with l i t e r a t u r e data, t h e response of B u f f a l o Lake v e g e t a t i o n t o l a k e l e v e l s t a b i l i z a t i o n should be p r e d i c t a b l e . Aquatic macrophytes i n the l a k e are d i s t r i b u t e d according to a number of more or l e s s c l e a r l y d e f i n e d g r a d i e n t s , e.g. s a l i n i t y , depth, exposure, competition and sediments, i n order o f importance. A l l p a r t s o f the lake a r e r i c h i n n u t r i e n t s , and rooted macrophytes at least, draw most o f t h e i r n u t r i e n t supply from the sediments (Sculthorpe, 1967, Best and Mantai, 1978) so t h e r e i s no n u t r i e n t gradient. The s t r o n g e s t g r a d i e n t i s s a l i n i t y , which r e s u l t s from p r o g r e s s i v e a t t e n u a t i o n o f freshwater i n f l o w from P a r l b y Creek, a t the Diminishing extreme west end o f t h e l a k e . effects of this d i l u t i n g flow, coupled with p a t t e r n s o f water c i r c u l a t i o n , d i v i d e the lake i n t o three p h y s i o g r a p h i c zones: P a r l b y Bay ( i n c l u d i n g the Narrows), where a l k a l i n i t y (300-400 mg/L), c o n d u c t i v i t y (600-900 900 mg/L) and TDS (>1700 mg/L); and area o f the lake, where a l k a l i n i t y exceeds 1000 mg/L and TDS may reach (Haag and Noton, 1981). a r e not very Secondary littoral zone 2000 mg/L o r more A l l o f t h e lake, except P a r l b y Bay, would be c l a s s i f i e d as s u b s a l i n e i n the scheme o f Hammer and H a s e l t i n e (1988) . Depth g r a d i e n t s vary from r e l a t i v e l y steep on the south Main Bay ( i n t h e area F o r e l e g and H i n d l e g o f Rochon Sands Park) t o very Bays. shore o f gradual i n P l a n t s extend downward t o a depth o f HydroQua t 61 roughly 3.5 m, which depth i s exceeded only i n the c e n t r a l p a r t of Main Bay. B u f f a l o Lake i s too shallow f o r water p r e s s u r e t o be a s i g n i f i c a n t d e l i m i t o r of macrophyte growth, and water temperatures remain- e s s e n t i a l l y constant with depth; t h e r e i s no thermocline. Consequently, ' l i g h t a l t e r a t i o n i s the o n l y s i g n i f i c a n t c o n t r o l on the depth modified distribution by water of macrophytes. turbidity and Light attenuation phytoplankton growth is (Wetzel, 1974) . Very g e n e r a l l y , a q u a t i c macrophytes are l i m i t e d t o areas of at l e a s t 5% of s u r f a c e i l l u m i n a t i o n (Sculthorpe, 1967). Secchi depth, the u s u a l i n d i c a t o r of l i g h t p e n e t r a t i o n , corresponds very approximately t o 10% s u r f a c e i l l u m i n a t i o n . Exposure t o wave a c t i o n and distribution plants and unfavourable in the water movement s e v e r e l y of many a q u a t i c p l a n t s . may shift sediments, damaging coarse sediment type. substrate are roots or quickly dispersed by wind, the fragment creating F l o a t i n g p l a n t s without but r o o t e d p l a n t s cannot t o l e r a t e r i g o r o u s water motion 1967). limits Waves abrade and an roots even most (Sculthorpe, Exposure a l s o reduces l i g h t p e n e t r a t i o n by i n c r e a s i n g l o c a l turbidity. In B u f f a l o Lake, p r e v a i l i n g winds cause a division littoral of zone growth on the n o r t h shore, vegetation, with north-south much more i n s m a l l , s h e l t e r e d bays and abundant i n the l e e of i s l a n d s (Haag and Noton, 1981). Competition among p l a n t s of different s t r u c t u r i n g a l l p l a n t communities. of the interaction between species is important in I t i s s i g n i f i c a n t here because competitive ability and salinity tolerance. A q u a t i c macrophytes v a r y widely i n s a l i n i t y t o l e r a n c e , from those that Ruppia (Hammer are confined spp. , which may and salinities Haseltine, to f r e s h waters, t h r i v e i n water 1988). t o l e r a t e d grows wider S a l i n i t y - t o l e r a n t s p e c i e s may But as as t o those saline generally, the upper as the limit such as 5000 mg/L range of increases. grow and t h r i v e i n waters of a wide range o f s a l i n i t i e s , w h i l e l e s s t o l e r a n t s p e c i e s a r e c o n f i n e d t o a c o r r e s p o n d i n g l y narrower range (Pip, 1988; Seddon, 1972; H e l l q u i s t , HydroOual 62 1980). S a l t t o l e r a n t s p e c i e s , however, a r e u s u a l l y excluded from l e s s s a l i n e h a b i t a t s by competition with other s p e c i e s (Hammer and H a s e l t i n e , 1988; Pip, 1988). They are thus found most abundantly i n s a l i n e waters where b e t t e r competitors cannot grow. Sediment p a r t i c l e s i z e i s the l a s t and l e a s t i n f l u e n t i a l c o n t r o l on macrophyte growth. While many species do have p r e f e r e n c e s f o r sediments o f p a r t i c u l a r g r a i n s i z e demonstrable (e.g. Jupp and Spence, 1977; Ho, 1979; Barko, 1983), these p r e f e r e n c e s are e a s i l y overwhelmed by other environmental f a c t o r s . For example, Husband and Hickman (1989) found t h a t sediment type was important f o r t h e distribution difference of Ruppia i n freshwater Pigeon at a l l i n either basin Lake, of Buffalo but made no Lake, presumably because the l a c k o f competition i n s a l i n e water allowed p l a n t s t o e s t a b l i s h on sub-optimal s i t e s . irrelevant f o r free-floating Utricularia. sediments and may much of i n fact Sediment species such type would as Ceratophvllum and the i n h i b i t i o n result from c l e a r l y be attributed turbidity. to I n most fine lakes, i n c l u d i n g B u f f a l o Lake, most s p e c i e s o f a q u a t i c macrophytes occur on a v a r i e t y of s u b s t r a t e types. The macrophytic f l o r a o f B u f f a l o Lake i s t y p i c a l o f a hardwater, s u b s a l i n e , e u t r o p h i c lake on the p r a i r i e s ( B i r d , 1981; van d e r V a l k and B l i s s , 1971; Walker and Coupland, 1970; P i p , 1979, 1984, 1988). Haag and Noton including distribution. recognized (1981) outlying This spatially divided bays, t h e lake based on classification separated into some macrophyte collapses community into types: 15 zones, abundance three Main and easily Bay, Secondary Bay, and Parlby Bay. Main Bay, i n c l u d i n g F o r e l e g Bay and the small bays on the n o r t h shore, supports a simple community dominated by Ruppia o c c i d e n t a l i s a n < i Potamoaeton pectinatus. P. vaqinatus i s a l s o present on the north and west shores; the macrophytic algae Chara sp. i s the only other s p e c i e s found. Ruppia i s the dominant s p e c i e s , and u s u a l l y HydroQual 63 reaches i t s maximum abundance i n the 1-2.5 m depth zone. water i s deeper, some p l a n t s may Where the be found as deep as 3 m. The subdominant £. p e c t i n a t u s i s r e s t r i c t e d t o s h a l l o w e r water, 0.5-1.5 m, and P. v a a i n a t u s i s found a t i n t e r m e d i a t e depths. Chara i s o n l y a minor component o f the community, found i n v e r y shallow water, u s u a l l y <0.5 m deep. Ruppia (widgeon saline environments, grass) i s one and o f the most p r e v a l e n t i s reputed t o have t o l e r a n c e o f any angiosperm (Melack, 1988). the plants i n highest salt Taxonomy of Ruppia a t the s p e c i f i c l e v e l i s confused, and the two p u t a t i v e s p e c i e s from North America, R. maritima and R. o c c i d e n t a l i s may be j u s t v a r i a n t s of the same Haseltine, occidentalis maritima species 1988). from i n some (Bird, No 1981; distinction Buffalo Lake Melack, has i s taken literature.) 1988, been Ruppia Hammer attempted as has equivalent a and here; to R. R. cosmopolitan but d i s c o n t i n u o u s d i s t r i b u t i o n i n s a l t marshes, b r a c k i s h e s t u a r i e s and inland saline salinities, lakes. It tolerates t o as much as 50,000 mg/L an TDS astounding range (Melack, 1988). of It is a l s o known from environments such as temporary l a k e s where s a l i n i t y v a r i e s w i d e l y w i t h i n one season. U n l i k e most s a l t - t o l e r a n t s p e c i e s Ruppia i s r a r e l y found i n f r e s h water (Pip, 1988) although t h e r e i s a h e a l t h y p o p u l a t i o n i n freshwater Pigeon Lake, A l b e r t a and Hickman, 1989) . British Columbian Reynolds and Reynolds lakes with c o n d u c t i v i t i e s although they sampled a much wider range. (Husband (1975) found Ruppia i n o f 1500-3000 uS/cm, The absence of Ruppia a t lower s a l i n i t i e s i s t y p i c a l but i t s absence i n more s a l i n e l a k e s i s anomalous, possibly (bicarbonate Columbia versus related to differences s u l p h a t e as the l a k e s ; Reynolds and Reynolds, (1979) sampled some 300 TDS i o n chemistry dominant ion 1975). In c o n t r a s t , aquatic habitats Ruppia i n l a k e s o f 60-2100 mg/L in British i n Manitoba, and Pip found (a range which i n c l u d e s f r e s h and s u b s a l i n e water) and a l k a l i n i t i e s o f 90-800 mg/L. for alkaline, basic in (pH 7.7-9.4) l a k e s i s marked. The a f f i n i t y Ruppia i s a l s o HydroQual 64 present i n Miquelon Lake 7500) (Bird, (TDS 4 000-7000 mg/L, c o n d u c t i v i t y 4500- 1981). Ruppia i s adapted t o r a p i d growth i n u n p r e d i c t a b l e environments. The seeds may germinate, grow and reproduce i n 3-4 months (Melack, 1988). Growth begins i n e a r l y s p r i n g , when s a l i n i t y i s r e l a t i v e l y low, continues q u i c k l y through e a r l y summer, then slows as s a l i n i t y i n c r e a s e s i n autumn ( B i r d , 1981). rapidly on s u i t a b l e substrates, P l a n t fragments f l o a t and r o o t e s p e c i a l l y muddy sediments. In a d d i t i o n , p l a n t s produce abundant, r e s i s t a n t seeds, and v e g e t a t i v e structures (turions) temperatures. which can withstand d e s i c c a t i o n During a c t i v e growth, strands or w i n t e r o f Ruppia spread r a p i d l y by underground rhizomes (Melack, 1988). Ruppia i s a poor competitor and s a l i n i t y water by other s p e c i e s . i s usually excluded from water; shading s h a r p l y reduces growth (Melack, 1988). seldom found below shallow water, 3.5 m, and low I t grows best i n c l e a n , shallow The p l a n t i s i s u s u a l l y most abundant 1 m deep or l e s s (Davis and Brinson, i n very 1980) . The preference of Ruppia f o r deeper water i n B u f f a l o Lake may again be a result of competition with Potamogeton i n shallower water. A s i m i l a r p a t t e r n appears i n l a k e s of B r i t i s h Columbia (Reynolds and Reynolds, 1975). Growing p l a n t s cannot withstand d e s i c c a t i o n , so p o p u l a t i o n s would be favoured by lake l e v e l s t a b i l i z a t i o n . t u r i o n s and rhizomes a r e a l l designed t o overcome t h i s Ruppia may have an a f f i n i t y for particular Seeds, limitation. sediment types, but these a r e not strong and do not appear t o operate i n B u f f a l o Lake (Husband and Hickman, 1989). The p l a n t a l s o a p p a r e n t l y t o l e r a t e s wide v a r i a t i o n i n n u t r i e n t l e v e l s (Melack, 1988). The found two species of Potamogeton i n the Main Basin, P. p e c t i n a t u s and P. v a g i n a t u s . are t a x o n o m i c a l l y and p h y s i o l o g i c a l l y s i m i l a r t o Ruppia. although they are much more common than Ruppia i n non-saline water. P. p e c t i n a t u s (sago pondweed) i s one o f the most common and widespread s p e c i e s of macrophyte i n hardwater l a k e s HydroQual 65 (Pip, 1984, 1988; Sculthorpe, 1967). s p e c i e s i n m i n e r a l - r i c h water, and (Seddon, 1972) often growing (Bristow e t a l . , 1977; Ho, I t i s o f t e n the dominant i s v e r y t o l e r a n t of enrichment luxuriously in eutrophic water 1979). In a study of >400 p r a i r i e and Precambrian S h i e l d l a k e s , Pip (1987) found P. p e c t i n a t u s was among the most frequent s p e c i e s and u s u a l l y dominated saline or a l k a l i n e h a b i t a t s . P. pectinatus dominated most submerged communities i n oxbow l a k e s o f f the Pembina R i v e r , north of Edmonton mg/L) (van Marsh, Manitoba common, der (conductivity: Valk and Bliss, (Anderson, occurring in 1978). boreal success of P. pectinatus P. tolerant habitats of nearly unique among America as of Delta i s much less an occasional P i p , 1987). of i t s e x t r a o r d i n a r i l y to Pip, species is is typical of 1987) salinities, In New the 90-170 i n the Although i t i s r e s t r i c t e d 1972; wide range s p e c i e s found i n s a l i n e water. very vaginatus i s a result (Seddon, a very as ( H e l l q u i s t , 1980; broad e c o l o g i c a l t o l e r a n c e l i m i t s . hardwater uS/cm, a l k a l i n i t y : North subdominant w i t h P. p e c t i n a t u s The 300 1971) , as w e l l 37 the as England, P. p e c t i n a t u s i s species and varieties of Potamoaeton found t h e r e , both f o r i t s p r e f e r e n c e f o r a l k a l i n e water (mean a l k a l i n i t y >110 mg/L) and the very wide range of a l k a l i n i t i e s which i t t o l e r a t e s (50-280 mg/L) Seddon (1972) claimed conductivities >200 P. (Hellquist, p e c t i n a t u s was uS/cm. Pip 1980). c o n f i n e d t o waters (1979, 1987) found with that P. p e c t i n a t u s and P. vaginatus were the o n l y s p e c i e s among 17 members of the genus t o show s i g n i f i c a n t a f f i n i t i e s f o r a l k a l i n e , s o l u t e r i c h water. TDS £. p e c t i n a t u s o c c u r r e d a t a l k a l i n i t i e s of 40-560 l e v e l s of 35 t o >5500 mg/L f o r E . v a g i n a t u s was s i m i l a r , although s a l i n i t y h a b i t a t s (maximum TDS: Haseltine (1988) found wherever Ruppia was and pH as h i g h as 10.5. P. found, mg/L, range i t was absent from some h i g h 4550 mg/L). S i m i l a r l y , Hammer and pectinatus a The in saline range which extended prairie from lakes 3 000 to HydroQual 66 50000 mg/L. mg/L. The range f o r P. vaginatus was l i m i t e d to 3500-4300 P. p e c t i n a t u s occurred i n s a l i n e lakes of B r i t i s h Columbia with c o n d u c t i v i t i e s of 600-3000, but i t may a l s o be found i n non- s a l i n e waters such as e u t r o p h i c ponds (Engel, 1985), or lakes (Jupp and Spence, 1977), and sometimes even e s t a b l i s h e s i n softwater h a b i t a t s ( C o l l i n s et a l . , 1987). G e n e r a l l y , however, P. p e c t i n a t u s out-competed by oligotrophic habitats abundance o n l y more (and probably specialized species (Pip, 1987) 1988, i n areas where other P. vaqinatus) in and non-saline thus s p e c i e s are excluded. Because of the very s i m i l a r requirements pectinatus and together The P. (Pip, 1979, vaginatus. these late May or Flowers form P l a n t s begin e a r l y June, when about 2-3 weeks l a t e r . to sprout P. occur plants reach are s i m i l a r t o the or seeds i n reach surface, 8-10°C. and water i n l a t e June or e a r l y J u l y ; seeds appear In the Delta marsh, maximum standing crops A f t e r t h a t , p l a n t s begin r e g a r d l e s s of temperature, and above-ground p a r t s are l a r g e l y gone by Engel, of Ruppia. from tubers temperatures were produced i n mid-August t o September. 1988, in physiologically frequently P. vaginatus when water the temperatures reach 15°C, to senesce, or occurs 1987). l i f e c y c l e s of P. p e c t i n a t u s and t h a t of Ruppia. species is freeze-up (Anderson, 1978; Hammer and H a s e l t i n e , 1985). P. p e c t i n a t u s i s a p l a n t of c l e a r , shallow water; i t i s i n t o l e r a n t of low l i g h t , and grows p o o r l y i n deep or murky water (Bristow e t al., 1977). 'Davis and Brinson (1980) reviewed 22 world-wide s t u d i e s and found P. p e c t i n a t u s at depths of 0.5 t o >11 m, but most populations were i n shallow water, <3 m deep. was In Delta Marsh t h e r e a strong peak of P. p e c t i n a t u s p r o d u c t i o n a t 60 cm depth, no p l a n t s below 1.2 m (Anderson, 1978). Ho (1979) suggests and that the maximum depth of P. p e c t i n a t u s i s near the s e c c h i depth, and t h i s appears t o be b r o a d l y tru£ f o r B u f f a l o Lake (Haag and Noton, HydroQual 67 1981). £ . p e c t i n a t u s grows on a wide range o f sediment types, but appears t o p r e f e r coarse, sandy s u b s t r a t e s Haseltine, silt in 1988) . While t h e s p e c i e s (Pip, 1987; Hammer and i s s a i d t o be i n h i b i t e d by (Ho, 1979), Anderson (1978) found good growth on s i l t y loams D e l t a Marsh. On the other hand, £. vaginatus has a strong a f f i n i t y f o r f i n e - p a r t i c l e s u b s t r a t e s , and was most abundant on the s h e l t e r e d n o r t h and west shores finer (Haag and Noton, 1981). wind and wave a c t i o n plants, o f Main Bay where sediments were £. p e c t i n a t u s i s e a s i l y damaged by (Jupp and Spence, 1977). but o f t e n separate Waves b a t t e r the v i a b l e fragments which then disperse throughout the l a k e ( B i r d , 1981) . The r e l a t i v e l y g r e a t e r dominance of Ruppia over £. pectinatus on the south shore o f Main Bay r e f l e c t s the former's g r e a t e r r e s i s t a n c e t o exposure. is restricted clear t o s h e l t e r e d north and west shores, i f this is a result o f intolerance t o exposure u n u s u a l l y s t r o n g p r e f e r e n c e f o r f i n e sediments. vaginatus Chara r e p l a c e d E . p e c t i n a t u s on exposed i s the f i n a l , p e c t i n a t u s community. resembling and minor o r an In D e l t a marsh, P. sites. component o f t h e Ruppia - P. Chara i s a b e n t h i c a l g a t h a t grows i n a form higher plants. (Sculthorpe, £. vaginatus b u t i t i s not I t i s t y p i c a l o f hard, 1967; P i p , 1984) and the c l o s e a l k a l i n e water similarity of requirements o f Chara and E . p e c t i n a t u s ensures t h a t they are o f t e n found t o g e t h e r lakes, both (Pip, 1984). freshwater chara i s o c c a s i o n a l i n other (van der Valk and moderately s a l i n e (Hammer and H a s e l t i n e , 1988). of the species found i n Buffalo Lake, Bliss, prairie 1971) and £. g l o b u l a r i s . one grows i n Wakaw Lake, Saskatchewan (TDS 3200-3700 mg/L, c o n d u c t i v i t y 3500-4100 uS/cm), but i t i s n o t found i n t r u l y s a l i n e l a k e s . Chara t h r i v e s i n non- s a l i n e waters as long as c a l c i u m carbonate i s abundant ( B i r d , 1981; S c u l t h o r p e , 1967). Chara i s a h i g h - l i g h t p l a n t , and u s u a l l y grows i n v e r y shallow water (Engel, 1985). 1 m or less I t s r e s t r i c t i o n t o depths o f i n B u f f a l o Lake i s probably p a r t i t i o n i n g with the other species exaggerated by resource present. HydroQual 68 Secondary Bay, including Hindleg Bay, supports a Ruppia - P. p e c t i n a t u s community very s i m i l a r t o t h a t found i n Main Bay, with a few important d i f f e r e n c e s . F i r s t , macrophyte d e n s i t i e s of a l l s p e c i e s are g e n e r a l l y lower here than i n Main Bay, because of the g r e a t e r t u r b i d i t y , and hence weaker l i g h t p e n e t r a t i o n , i n Secondary Bay. On shallow, 1981) the other hand, protected growth of Ruppia i s l u x u r i a n t bays along where cover may reach the north 100%. i n the shore (Haag and Noton, These bays have fine, silty s u b s t r a t e s , r i c h i n organic matter, which appear t o favour Ruppia growth. Growth of P. p e c t i n a t u s and P. vaginatus i s l e s s i n Secondary Bay than i n Main Bay, and depth zonation i s l e s s pronounced. main species are attenuation, restricted and Potamogeton water as i n Main Bay. to shallow water by A l l three rapid light does not d i s p l a c e Ruppia t o deeper A l l s p e c i e s are l e s s abundant on the south shore where sediments are c o a r s e r and wind and wave a c t i o n are more rigorous. The most significant difference between Main and Secondary Bay p l a n t communities i s the appearance of the a q u a t i c moss F o n t i n a l i s sp. i n Secondary Bay, e s p e c i a l l y on t h e n o r t h shore. (Fontinalis is as a minor component of Bashaw Bay, o f f Main Bay, well.) Although never dominant, F o n t i n a l i s does reach 5-15% cover i n many places (Haag and Noton, 1981). I t grows b e s t i n the shallow, p r o t e c t e d water of H i n d l e g Bay, and i n the small bays on the n o r t h ­ west shore. The appearance of F o n t i n a l i s here i s unusual, because aquatic mosses u s u a l l y grow best i n s o f t water (Wetzel, 1974), and i t i s r a r e l y found i n a l k a l i n e , much l e s s s a l i n e l a k e s . its relatives Saskatchewan have not and A l b e r t a been recorded in saline F o n t i n a l i s or habitats of (Walker and Coupland, 1970; Hammer and H a s e l t i n e , 1988) or B r i t i s h Columbia (Reynolds and Reynolds, 1975) . Oddly, B i r d (1981) does not mention F o n t i n a l i s i n h i s survey o f HydroQual 69 B u f f a l o Lake macrophytes, even though he c o n s i d e r s s e v e r a l s p e c i e s too r a r e t o be measured by Haag and Noton (1981). Pip f i n d " a q u a t i c mosses" i n lakes and ponds i n southern (1979) d i d Manitoba. L i t t l e i s known of the ecology o f a q u a t i c F o n t i n a l i s because most work i s concerned appears t o d i f f e r only use C0 with flowering from other p l a n t s can use d i s s o l v e d C0 C0 2 e s s e n t i a l l y disappears non-alkaline, soft-water f o r photosynthesis. or HC0 2 However, Fontinalis a q u a t i c macrophytes i n t h a t i t can as a carbon source 2 plants. Most v a s c u l a r (Sculthorpe, 1967). 3 Since f r e e at pH 8 o r above, t h i s l i m i t s mosses to environments and makes t h e i r presence i n B u f f a l o Lake the more s u r p r i s i n g . I t appears t h a t these p l a n t s are l i v i n g a t the edge of t h e i r t o l e r a n c e zone, s i n c e they are absent from the more s a l i n e Main Bay. Conversely, t h e i r absence from the more d i v e r s e community i n P a r l b y Bay suggests a modest competitive ability. Fontinalis grows at i s reputedly greater Notwithstanding, depths t o l e r a n t of low than plants other levels and (Sculthorpe, i t appears t o be as l i m i t e d t o shallow B u f f a l o Lake as the other s p e c i e s present Pip light often 1967). depths i n (Haag and Noton, 1981). (1979) found t h a t a q u a t i c mosses grow w e l l on a l l substrate types. The only other new species in this zone was Myriophvlluro exalbescens (water m i l f o i l ) which o c c u r r e d i n v e r y s m a l l numbers i n the extreme west end species of H i n d l e g appears t o be Bay (Haag and Noton, 1981). a t the edge of i t s range, The and was undoubtedly d i s p e r s e d from the abundant p o p u l a t i o n i n P a r l b y Bay. Chara was living a l s o found i n s m a l l numbers a l l around Secondary Bay. The p l a n t community i n shallow P a r l b y Bay and the narrows i s unique i n the l a k e . Ruppia i s absent, and £. v a g i n a t u s the e a s t e r n s i d e of the bay. the common s p e c i e s i s r e s t r i c t e d to In t h e i r p l a c e are P. p e c t i n a t u s Mvriophvllum exalbescens. Lemna t r i s u l c a and and HydroQuaI 70 Ceratophvllum demersum (Haag and Noton, 1981). s i m i l a r requirements and o f t e n occur together i s too shallow f o r depth zonation, and These s p e c i e s have (Pip, 1988). The bay a l l s p e c i e s grow p a t c h i l y intermixed. Myriophvllum exalbescens i s one of the most common and widespread s p e c i e s of a q u a t i c p l a n t s (Sculthorpe, 1967). exalbescens was Pip (1979) found M. the most common s p e c i e s i n a l l a q u a t i c h a b i t a t s of Manitoba, o c c u r r i n g i n over 50% o f a l l s i t e s sampled, and and a common member of the Coupland "lightly (1970) l i s t i t as s a l i n e " marshes and common i n freshwater oxbow l a k e s B l i s s , 1971). M. exalbescens same s p e c i e s as M. lakes i n Saskatchewan. i n Alberta (van Walker flora of It i s also der Valk and (considered by many authors t o be the spicatumi i s t o l e r a n t of eutrophication and a l k a l i n i t y and i s f r e q u e n t l y found i n n u t r i e n t - r i c h waters (Bristow i s abundant in Lake Wabamun, A l b e r t a , a e u t r o p h i c , a l k a l i n e , but non-saline et a l . , 1977; Bird, 1981). It lake (Haag, 1979). Hammer and H a s e l t i n e r e p o r t Myriophvllum from Wakaw and Humboldt Lakes, Saskatchewan 2900-4700 mg/L) ( c o n d u c t i v i t y 3500-4300 uS/cm, TDS but not i n more s a l i n e l a k e s . In B r i t i s h Columbia, Reynolds and Reynolds (1975) found Myriophvllum i n l a k e s w i t h c o n d u c t i v i t i e s of 600-3000 uS/cm. A s i m i l a r range i s given by Rawson and Moore (1944; quoted i n B i r d , 1981). Since these ranges i n c l u d e the u s u a l values f o r Secondary Bay, at least factor, not salinity per se, is Competition with species. Ruppia. at h i g h e r Pip saline salinities i t appears t h a t limiting the spread t o l e r a n t species, and P. n e v e r t h e l e s s excluded where P. pectinatus exalbescens occurring is between This this Indeed, pectinatus had Mvriophyllum and implies that a lowering of of Myriophvllum i n B u f f a l o Lake. intermediate shallow of from h i g h l y a l k a l i n e , or s a l i n e h a b i t a t s survived. s a l i n i t y c o u l d f o s t e r the spread M. other especially i s the most l i k e l y f a c t o r . (1988) demonstrated t h a t Myriophvllum very s i m i l a r niche e c o l o g i c a l t o l e r a n c e ranges, but was some in light deep-water requirements species often (Reynolds and HydroOual Reynolds, 1975). Peak abundance i s g e n e r a l l y a t o r below s e c c h i depth (Davis and Brinson, 1980), or i n shallow water (< 1 m) where shading from other i s a problem disagreement plants as t o sediment exalbescens r o o t s i n soft, (Engel, preferences; 1985). Bird There i s (1981) claims mucky bottoms i n B u f f a l o Lake, M. while Barko (1983) c l a i m s i t i s i n h i b i t e d by 10-20% o r g a n i c matter. P i p (1979) found Mvriophvllum was e q u a l l y abundant i n sediments o f a l l k i n d s , so e v i d e n t l y there i s no s t r o n g Lemna t r i s u l c a floating ( i v y - l e a v e d duckweed) i s a s p e c i e s o f s m a l l , f r e e - plants typical o f hard, (Seddon, 1971; Pip, 1988). throughout 1971; preference. the p r a i r i e s alkaline or eutrophic I t i s common i n s t i l l - w a t e r (Pip, water habitats 1979, 1984; Walker and Wehrhahn, Walker and Coupland, 1970; van der Valk and B l i s s , 1971). Although i n d i v i d u a l p l a n t s are t i n y (<1 cm) , they reproduce q u i c k l y to form chains o r groups which may amass c o n s i d e r a b l e U n l i k e the e q u a l l y common L. minor. L. t r i s u l c a on, t h e water s u r f a c e (Sculthorpe, biomass. f l o a t s below not 1967) and c a n t h e r e f o r e develop i n a much t h i c k e r l a y e r as p l a n t s crowd on t o p o f one another. L. trisulca i s t o l e r a n t of enriched waters (Seddon, 1972; B i r d , 1981) and i s one o f o n l y a few s p e c i e s with a p r e f e r e n c e f o r water rich i n d i s s o l v e d o r g a n i c matter vaginatus and Mvriophvllum. w i t h which (Pip, 1979). i t i s frequently L i k e P. associated, (Pip, 1988), L. t r i s u l c a has a wide t o l e r a n c e range f o r a l k a l i n i t y and TDS. Seddon conductivity. (1972) said I t occurred i t required at least regularly i n Alberta 170 uS/cm oxbow l a k e s o f a l k a l i n i t y 90-170 mg/L a l k a l i n i t y and 300 uS/cm c o n d u c t i v i t y (van der V a l k and B l i s s , 1971). as h i g h as 560 mg/L a l k a l i n i t y tolerance occurs P i p (1988) found 1. t r i s u l c a i n waters (mean 135 mg/L) o f a l k a l i n e or ion-rich i n marginally such as P a r l b y waters, saline habitats . Because o f i t s L. t r i s u l c a commonly (Walker and Coupland, 1970) Bay, but i t i s not found i n s a l i n e o r s u b - s a l i n e waters (Reynolds and Reynolds, 1975; Hammer and H a s e l t i n e , I t i s t h e r e f o r e probably 1988). r e s t r i c t e d i n B u f f a l o Lake by s a l i n i t y . HydroQual 72 L i k e a l l f r e e - f l o a t i n g s p e c i e s , L. t r i s u l c a cannot t o l e r a t e waves and i s confined small t o areas o f s t i l l water. ponds and embayments, s i n c e allow too much wind. Buffalo large This g e n e r a l l y means expanses of open water T h i s f a c t o r would l i m i t L. t r i s u l c a even i f Lake were l e s s s a l i n e . Other g r a d i e n t s , such as water depth, sediment type and shading are unimportant because o f the growth h a b i t of the s p e c i e s . L. t r i s u l c a appears t o be a good competitor i n i t s range (Pip, 1988). Ceratophyllum demersum (hornwort or c o o n t a i l ) i s also f l o a t i n g s p e c i e s , so i t s ecology i s s i m i l a r t o Lemna. is cosmopolitan 1972). i n hard, It i s a conditions highly eutrophic water adaptable species tends t o d i s p l a c e biomasses (Best, 1986). other (Bird, species a free- C. demersum 1981; Seddon, which under ideal and accumulate large P i p (1979) found C. demersum a t almost a t h i r d of 300 s i t e s i n Manitoba; a l k a l i n i t y reached as high as 600 mg/L (mean 100 mg/L) (Pip, 1988). L i k e Lemna. Ceratophyllum t o l e r a t e s m i l d s a l i n i t y , but i s excluded from t r u e s a l i n e h a b i t a t s (Walker and Coupland, 1970). found a negative P i p (1979) a s s o c i a t i o n of C. demersum and high TDS, with the upper l i m i t near 1600 mg/L. Reynolds and Reynolds (1975) found C. demersum i n B.C. lakes o f only 600-800 uS/cm c o n d u c t i v i t y , and i t i s not found i n s a l i n e or s u b - s a l i n e lakes of the p r a i r i e s and Haseltine, 1988). These data imply t h a t s a l i n i t y Lake would need t o drop c o n s i d e r a b l y The wide t o l e r a n c e well. (Hammer i n Buffalo f o r C. demersum t o spread. o f C. demersum a p p l i e s t o other gradients as Although i t g e n e r a l l y f l o a t s near the s u r f a c e , C. demersum tolerates 1986). quite low l i g h t (van der Valk and B l i s s , I t has no sediment sometimes grow "rooted" preference i n s o f t mud. 1971; Dale, ( P i p , 1979) but p l a n t s In t h a t case they occupy a wide range o f depths, with peak growth a t about the s e c c h i depth (Davis and Brinson, normally grow 1980; Engel, f r e e - f l o a t i n g , they 1985). But because the p l a n t s a r e extremely susceptible to HydroQuaI d e s t r u c t i o n and d i s p e r s i o n by wave a c t i o n (Freedman e t a l . , 1977). They a r e thus r e s t r i c t e d t o shallow q u i e t waters. A few other species occur o c c a s i o n a l l y , a l l i n t h e west end o f P a r l b y Bay where water i s l e a s t s a l i n e . pusillus, These i n c l u d e Potamogeton P. r i c h a r d s o n i i . U t r i c u l a r i a v u l g a r i s and R i c c i o c a r p u s natans (Haag and Noton, 1981; B i r d , 1981). A l l o f these a r e common species i n eutrophic, salinity. 1987) hard waters, but a r e n o t t o l e r a n t o f P. p u s i l l u s i s a cosmopolitan w e l l known from p r a i r i e l a k e s species (Collins, e t a l . , (Walker and Coupland, 1970). I t t o l e r a t e s a wide range o f TDS and a l k a l i n i t y (Pip, 1987) and has been found i n l a k e s o f c o n d u c t i v i t y 40-800 uS/cm and TDS 10-1400 mg/L (Reynolds and Reynolds, 1975; Pip, 1987). an u b i q u i t o u s hard-water, broad-leaved not s p e c i e s (Pip, 1987) which i s found i n l a k e s o f TDS c o n c e n t r a t i o n s Hammer and H a s e l t i n e , richardsonii 1988). from B r i t i s h 700-800 uS/cm. >3500 mg/L (Pip, 1987, Reynolds Columbia P. r i c h a r d s o n i i i s and Reynolds lakes with report P. c o n d u c t i v i t i e s of U. v u l g a r i s and R. natans a r e both free-floating s p e c i e s , and t h e r e f o r e r e s t r i c t e d t o s h e l t e r e d h a b i t a t s . R. natans is a tiny, s u r f a c e - f l o a t i n g p l a n t l i k e Lemna. Utricularia i s a p l a n t o f r i c h , n o n - a l k a l i n e waters ( B i r d , 1981; 1984) and i s known t o have a low s a l t t o l e r a n c e (Walker and Pip, Wehrhahn, 1971, Wilcox, 1986). Nevertheless, I t i s not common. i t was r e p o r t e d from Wakaw Lake, Saskatchewan ( c o n d u c t i v i t y 3500-4100 uS/cm, TDS 32003700 mg/L; Hammer and H a s e l t i n e , 1988). None o f these s p e c i e s i s expected t o respond n o t i c e a b l y t o l a k e l e v e l stabilization. Emergent A q u a t i c s Emergent f l o r a around t h e l a k e was dominated by S c i r p u s ( b u l r u s h ) ; S. validus americanus was most (Bird, abundantly i n shallow on t h e south common, 1981; Haag with occasional and Noton, S. acutus 1981). o r S. Scirpus grows (<1 m) t o s e a s o n a l l y submerged areas, except shore where wave a c t i o n i s severe. The best growth occurs on t h e n o r t h and west s i d e s o f Main Bay. HydroOual 74 These species conditions, than of Scirous are a l l t y p i c a l i n Buffalo Lake. S. americanus marshes of the upper S t . Lawrence 1985) of a l k a l i n e or s a l i n e and are o f t e n a s s o c i a t e d with s a l i n i t i e s where i t u s u a l l y dominates River f a r greater the intertidal (Deschenes and Serodes, composes the lowest band of vegetation. Walker and Coupland (1970) l i s t S. americanus as one of the common species i n s a l i n e wet Haseltine (1988) concentrations meadows of Saskatchewan, and Hammer and S. americanus i n p r a i r i e lakes with TDS report of 3000 to >50,000 mg/L. Only h y p e r s a l i n e lakes was S. americanus excluded. i n extremely S i m i l a r l y , Reynolds and Reynolds r e p o r t S. v a l i d u s (but not S. americanus) from s a l i n e lakes with c o n d u c t i v i t i e s of 1500-12,000 uS/cm, but r a r e l y from less s a l i n e lakes. lakes near the Pembina R i v e r , S. v a l i d u s was 1971) where alkalinities (90-170 uS/cm) were r e l a t i v e l y low. occasionally Alberta found i n oxbow (van der V a l k and mg/L) and conductivities Hammer and H a s e l t i n e acutus i n lakes of 3000-35,000 mg/L TDS. Bliss, (300 (1988) found S. Thus these s p e c i e s a l l have very wide s a l i n i t y t o l e r a n c e s , but S. acutus and e s p e c i a l l y S. americanus appear t o be near t h e i r lower l i m i t i n B u f f a l o Lake. Bulrushes are conspicuous, round-stemmed p l a n t s which tend t o grow i n dense, monospecific stands near the water's edge. much reduced or absent. Scirpus and u s u a l l y occurs i n r a t h e r w e l l d e f i n e d shore. Leaves are o f t e n has a l i m i t e d depth range bands around the lake Plants are o f t e n submerged i n s p r i n g but growing completely exposed by mid-summer. In S. americanus. a t l e a s t , s a l i n i t y submergence time i n t e r a c t t o l i m i t growth. americanus f o r 65-85% can tolerate immersion b r a c k i s h water (about 15000 mg/L of the S. time; i n TDS), the l i m i t i s reduced t o 33- 37% (Deschenes and Serodes, 1985). Lake would both s t i m u l a t e In f r e s h water, and Therefore, (lower s a l i n i t y ) s t a b i l i z i n g Buffalo and depress (higher, more s t a b l e s h o r e l i n e ) growth of S c i r p u s . The other emergent species around B u f f a l o Lake are a l l too r a r e t o quantify. These i n c l u d e Carex r o s t r a t a (beaked sedge), Polvgonium HydroQual 75 arophibium (water smartweed), cattail). A l l o f these a r e common freshwater p l a n t s , t o l e r a n t o f and Typha e u t r o p h i c and m i l d l y s a l i n e c o n d i t i o n s . latifolia (broad-leaved £. amphibium i s o c c a s i o n a l i n q u i e t water i n and around Parlby Bay ( B i r d , 1981). This species i s common i n n o n - s a l i n e and m i l d l y s a l i n e marshes and wet meadows i n Saskatchewan (Walker and Coupland, 1970). Reynolds and Reynolds (1975) found i t i n l a k e s w i t h c o n d u c t i v i t i e s o f 600-3000 mS/L, so B u f f a l o Lake seems t o be near i t s t o l e r a n c e l i m i t . Carex r o s t r a t a i s common i n f r e s h water (van der V a l k and B l i s s , 1971) but i s more tolerant o f mild salinity than other Carex s p e c i e s Wehrhahn, 1971; Walker and Coupland, 1970). (Walker and I t does not occur i n s a l i n e l a k e s , and i s r e s t r i c t e d t o wet s o i l around the west end of B u f f a l o Lake. Tvpha i s a r e l a t i v e l y s a l t - t o l e r a n t s p e c i e s (Wilcox, 1986) . Hammer and H a s e l t i n e (1988) r e p o r t e d c a t t a i l s i n Wakaw Lake (Saskatchewan) and F l e e i n g h o r s e Lake 3000-4000 mg/L. colonize (Alberta) where TDS ranged Typha i s an a g g r e s s i v e s p e c i e s which can r a p i d l y disturbed areas (Wilcox, 1986). However, t h e s p e c i e s r e q u i r e s p r e d i c t a b l y f l u c t u a t i n g water l e v e l s so t h a t mature p l a n t s are out o f t h e water. Floods other than i n t h e s p r i n g a r e very detrimental t o t h i s species Buffalo i s restricted Lake, Typha (van d e r Valk and B l i s s , t o a small area 1971). In o f T a i l Bay (southwest c o r n e r o f Secondary Bay) where i t grows with Carex and Scirpus. 6.2 Changes i n A q u a t i c Macrophyte Abundance and D i s t r i b u t i o n F o l l o w i n g S t a b i l i z a t i o n o f Lake L e v e l s S t a b i l i z i n g water l e v e l s i n B u f f a l o Lake w i l l change t h e f o l l o w i n g v a r i a b l e s which a f f e c t growth o f a q u a t i c macrophytes: (20% (slight decrease), depth increase), littoral i n c r e a s e ) , reduced s h o r e l i n e v a r i a b i l i t y , water c l a r i t y slight increase). from s a l i n i t y i n h i b i t i o n . stimulate (slight (possible Any i n c r e a s e i n macrophyte growth w i l l from an expanded and s t a b i l i z e d also salinity zone littoral zone and p a r t i a l result relief A s l i g h t i n c r e a s e i n water c l a r i t y would macrophyte growth, especially by the dominant HydroQual 76 species such as Ruppia and P. p e c t i n a t u s which are v e r y i n t o l e r a n t of low l i g h t . Less t u r b i d water from the Red Deer R i v e r may cause a marginal i n c r e a s e i n water c l a r i t y d u r i n g p e r i o d s of pumping but any improvement w i l l be l a r g e l y c o n f i n e d t o Secondary Bay. A wider zone though increased of macrophyte lake depth may growth will result, exclude p l a n t s , even the from deep water areas. The e f f e c t w i l l be g r e a t e s t around Secondary Bay and l e a s t around the south shore of Main Bay ( i n the area of Rochon Sands Park) where the shore contours are r e l a t i v e l y steep. Stabilization will remove some of the natural variation in s h o r e l i n e p o s i t i o n through the seasons i n response t o e v a p o r a t i o n and rainfall. This will increase growth of submergent because i t removes the danger of d e s i c c a t i o n stable environment light level. moderately with respect t o wave a c t i o n , temperature and Here the g r e a t e s t e f f e c t w i l l be where s h o r e l i n e s are steep because inundated species and c r e a t e s a more i n the spring s h a l l o w e r areas and then exposed will continue t o later i n the be growing season. No s i g n i f i c a n t changes stabilization. Main i n s p e c i e s composition should r e s u l t and Secondary Bays will continue from to be dominated by Ruppia. although P. p e c t i n a t u s and P. v a g i n a t u s may displace Ruppia to some extent. These three species are p h y s i o l o g i c a l l y s i m i l a r (indeed i n d i s t i n g u i s h a b l e except on c l o s e examination) so consequence. A stronger s h i f t take place i n less c l a r i t y improves. of a the l a t t e r species saline change is of little practical from Ruppia t o P. p e c t i n a t u s Secondary Bay, especially may i f water In t h a t case, s u b s t a n t i a l l y more abundant growth species i s possible. Lowering o f the s a l i n i t y may a l s o f o s t e r the spread of Mvriophvllum from P a r l b y Bay t o Secondary Bay. HydroQual 77 No dramatic plants. and species replacements. a r e expected among emergent S c i r p u s v a l i d u s may i n c r e a s e a t the expense o f S. actus S. americanus. but again t h i s would not impact on use o f the lake. In t h e long term (>20 years) a gradual r e t u r n t o o r i g i n a l levels i s expected. Aquatic macrophyte growth and salinity community s t r u c t u r e should f o l l o w , w i t h t h e e x c e p t i o n t h a t , once e s t a b l i s h e d , invading species may p e r s i s t . In p a r t i c u l a r , Myriophvllum may remain f o r some time i n Secondary Bay d e s p i t e i n c r e a s i n g s a l i n i t y . HydroOual 78 7.0 RED The frequency and levels will DEER RIVER IMPACTS be duration determined pumping s c e n a r i o f o r the 1969 3 pumping at 2.1 m /s of pumping r e q u i r e d t o maintain lake by high the t o maintain The plan. The p e r i o d r e q u i r e d 34 months of levels. months of t h i s 2 0 year p e r i o d . to the Red operational to 1988 An outflow occurred The T a i l Creek outflow i n 14 discharges Deer R i v e r downstream of the proposed i n t a k e . q u a l i t y of water i n the outflow w i l l be between t h a t found i n Parlby Creek during pumping and Secondary Bay. Parlby Creek are at the west end of Buffalo Lake. Outflow of high pumping and rainfall (wet years). followed located periods and Tail Complete mixing of the inflow would not be expected as the water i s d i r e c t e d to T a i l Creek. The q u a l i t y of water p r o j e c t e d f o r T a i l Creek d u r i n g p e r i o d s of an outflow was River. Tail compared Secondary Bay to average monthly Creek q u a l i t y was data assumed to be f o r the equal Red to Deer that in even though complete mixing of i n f l o w water may be achieved. The monthly r i v e r average water q u a l i t y data were used to c a l c u l a t e the change i n Red Deer R i v e r q u a l i t y (Table 7.1). Apart little discharge and not from the e x c e p t i o n a l l y high outflows i n f l u e n c e on the phosphorus c o n c e n t r a t i o n s quality of Red i n 1974, T a i l Creek had Deer R i v e r water. Total are f o r the most p a r t reduced by 1 t o and conductance i s i n c r e a s e d by 1 to 21% (high value i n March 6% 1974 omitted). A 20% i n c r e a s e i n conductance over a month p e r i o d i s not considered a major e f f e c t i v e l y with be managed the pumping schedule to l e s s e n any impact. The outflow can impacts. more HydroOual o (D cn B o ro CN CD H 1 1 in 1 O H o 1 o H o n I rH rH CM m IN o CO I- 1 1 1 3 A U D +J 55 0) O CO H H CO CO H •P T3 CD o « w •H rH ft) 3 O •tf f* l» cn co in in r~ in rH m in m o o o o o o o o o O o o O o CO CO l» in o ro r~ o in o CO o in o t» o ro CO O ro f» O o o o O o o o o o o o o o o o o o CN H r» cn CN in rH l» CO IN r- CN ro in m o cn CO rH rH CO H CO CO CM CN rH H H H H rH rH H rH o H rH H rH CN en O H o m CO CD cn r» n in in in CO CO in •* n , ft \ CD En cn CD 6 m S-l CJ a z o g o \ O Oj (5 u CD CD Q CN H H H in rH i rH 3 rH •H iH a hi < »r in rH rH H T3 CD U CD CD •P co >x CO Q E CD C 3 n cn 3 < a u ra c co 01 3 r< ja CD BH CM cn CO r~ 81 rH rH •H (H J3 0 ri to E >i CO X CD C CO E 3 (0 n E " 0.054 STANDARD DEV 3.012 0.011 4 0.018 0.024 0.021 3.003 0 4 390 417 404 11 0 : PARLBY CREEK - BUFFALO LAKE DEVELOPMENT PROJECT TECHNICAL APPENDIX III PUBLIC CONSULTATION DATA REPORT PREPARED BY: WESTERN ENVIRONMENTAL A N D SOCIAL TRENDS TECHNICAL APPENDIX III T h e P u b l i c Consultation D a t a R e p o r t is a supporting document prepared by W e s t e r n E n v i r o n m e n t a l and Social T r e n d s ( W . E . S . T . ) for the P a r l b y C r e e k - Buffalo L a k e D e v e l o p m e n t Project E n v i r o n m e n t a l Impact Assessment, prepared by E n v i r o n m e n t a l M a n a g e m e n t Associates L t d . T h e information i n this report was used to scope the issues and assess the social impacts o f the Buffalo L a k e Stabilization project. TABLE OF CONTENTS 1.0 ISSUE SCOPING LIST O F I N T E R V I E W E E S INTERVIEW GUIDE ISSUE IDENTIFICATION 2.0 PUBLIC NOTIFICATION P U B L I C N O T I C E S (2) N E W S L E T T E R (2) OPEN HOUSE 3.0 PUBLIC LETTERS A N D BRIEFS 4.0 OPEN HOUSE C O M M E N T SHEETS 5.0 CONSULTATION A N D SOCIAL IMPACT ASSESSMENT S U M M A R Y 6.0 EIA TERMS OF R E F E R E N C E SHEET SECTION 1.0 ISSUE SCOPING LIST O F INTERVIEWEES INTERVIEW GUIDE ISSUE IDENTIFICATION PARLBY CREEK/BUFFALO LAKE PROJECT BUFFALO LAKE STABILIZATION COMPONENT ISSUE SCOPING SUMMARY NUMBER OF INTERVIEWS • 30 interviews were conducted. INFORMATION RE EIA • 24 did not require more information. • 5 did require more information. i asked if we reported back to the Water Quality Branch. ; 1 wanted information on the timing of the studies. 1 required more information about W.E.S.T. and its role in EIA. • 1 was concerned that he didnt want to speak for the organization with which he was associated. INFORMATION RE PROJECT • 25 required no further information on the project than was given by the interviewer in the preamble. • 2 wanted to know about the route for water flow from the Red Deer River to Buffalo Lake. • 1 stated that 99% of previous studies were "garbage". • 1 required further information on the project. • 1 had written a report ten years ago on the project and stated the government report was flawed in several respects. The pond weeds and effects on them were not examined and the emphasis on algae/phosphorous loading was inappropriate. ENVIRONMENTAL CONCERNS Construction of a Pumphouse. Pipeline and Canal to Convey Water from the Red Deer River to Alix 3 felt they didnt know enough to comment. 22 had no serious concerns about environmental impacts. 10 expressed concern about the project in the following ways. 1 was a member of the Special Areas Committee and while not wanting to go on record for or against the project, the Committee voiced a desire for only one pumphouse, instead of two. The pumphouse site selection could be evaluated as part of an EIA. 1 had some concerns about the pumphouse but didnl provide specifics. 1 expressed definite environmental concerns in four particular studies that were elaborated on in a previously written letter. No further details were provided. 3 were concerned about the reduced flow in the Red Deer River. 1 thought the demands on the river were already high. 1 was concerned about how this demand on the River would affect the water flowing into the Saskatchewan and the Interprovincial Water Agreement with Saskatchewan. 2 thought the Red Deer River might not be able to meet demands for water in certain years and thought a small dam would have to be built on the river. 2 were concerned that water removal from the Red Deer River would harm cottonwood trees downstream. 1 expressed concern over possible harm to the recreational potential of Alix Lake if weeds and algae were introduced into Alix Lake as a result of the diversion of the Red Deer River. 1 thought the Red Deer River should be cleaned up. 1 was concerned that this was the beginning of a larger project for irrigation which included special areas land to the southeast. Flow of the Red Deer River Water Through the Existino and Proposed Channelization from Alix to Parlby Bay. • 5 had no concerns whatsoever. 1 of these 5 noted that the lake was nearly dead now and was already so salty that no further harm could be done. • 8 had no concerns with increased volume of water. • 1 said the channel would handle the flow and likely deepen. • 1 was concerned about the amount of water taken out of the Red Deer river and the amount to be channelled to the South Saskatchewan river. Concern was also expressed over the present low level of the Red Deer River. 2 il • 5 noted that erosion from the channel banks is a problem and increased volume could worsen this situation. • 4 said the channel banks need inspection and maintenance, to prevent erosion. • 2 said the channel is too big for its purpose. The same result could be achieved by cleaning out the creek bed. • • 1 was impressed with the channel. 1 noted the tendency of algae to build up in the canal as a result of an influx of water from the Red Deer River. • • 1 said fencing off cattle would help prevent erosion. 1 noted that two actions could be taken with construction to reduce the excessive erosion along the silt margin of the canal/creek: use drag lines rather than road building equipment; apply a thorough coating of gravel to cut down on erosion. • 1 felt that there will be siltation where the creek enters the lake at Parlby Bay. • 1 thought it would decrease flooding from run off. • 1 expressed concern over flooding of some of the Caryle property if the Buffalo Lake water level was raised. • 1 wondered how much water flow would result. The lake is in dire need of some additional water. Areas containing little series of sand dunes were noted along the shore. • 1 thought the stabilization project would change the water flow regime in the area. • 2 thought it was unfortunate that the creek was destroyed. • 1 thought the project would affect waterfowl habitat. • 1 expressed concern that algae would be brought into Buffalo Lake. • 1 wanted to see the EIA before making decisions regarding lake stabilization. • 4 didnl know enough about it to comment. Diversion of Water Into Buffalo Lake - Water Quality. • 10 had no concerns or had no comment. • 2 said concerns had to be addressed. • 1 had faith that the project would not go ahead if studies showed problems. • 1 cited the Gull Lake project as one in which water diversion didn't improve the water. • 2 said salinity would be reduced. • 1 said salinity would not change. • 1 stated that the lake was too salty to provide water for irrigation purposes. • 1 said phosphorous levels would be unchanged. • 1 realized that after stabilization, water would have a higher phosphate content and would cause algae growth but didnl think the water quality would be any worse because of the flow into and out of the lake. 3 • 1 did not believe that low levels of phosphorous would continue. The initial government report doesnl adequately discuss why phosphorous decreased in the past few years, the government hasnl considered that phosphorous comes mostly from agricultural fields. Increased precipitation yields a heavier phosphorous load in the river. 1 said solids in the lake would increase because of erosion and chemical pollutants from run off. 2 were concerned that Red Deer River water polluted with lead and mercury would accumulate in fish. 1 expressed concern about bringing pollutants and algae now present in the Red Deer River's contaminated waters into Buffalo Lake. 15 years ago the Red Deer River was clean. 1 thought the lake was already polluted with chemicals from run off. 3 expressed concern over possible weed and/or algae growth. 1 though the Red Deer River water would be higher in nutrients. 1 said water quality would improve. 1 expressed a need for water analysis in the creek system. 1 expressed concern that the spring fed areas of Parlby Creek may have an effect on water quality. 1 wished to regain the system of flood and drain where Buffalo Lake used to overflow into the Red Deer River. Questions regarding water quality and algae content could be answered if this were to happen. If Buffalo Lake was kept at a sustained level and overflowed, a flushing action would result, which would improve water quality. 1 stated that in 1974 increased run-off resulted in a great deal of water in the drainage basin, illustrating that the level of the lake could be increased. 1 said the project is not justified if fluctuations are due to the climate cycle and not due to permanent climate change. 1 said the water level change is part of a cycle and the levels will rise again - an example of a pioneer trail in the area that is now covered in water was given. Diversion of Water Into Buffalo Lake Groundwater and Hydrology • • • 12 had no concerns. 6 had no comment. 1 didnl know. • 5 said water quality would improve. • • 2 said the water table would rise to the detriment of flatlands. 1 said the lake has springs in rt. • 2 said there could be remote effects (no specifics). 4 • 1 said there could be environmental concerns if the groundwater was near the lake. • 1 indicated the need to know more about the groundwater and hydrology of the area, particularly more about the government report which implies that phosphorous goes with the water from the lake into the groundwater. "Amazing amounts" of water go from the lake to the groundwater. Diversion of Water Into Buffalo Lake - Aquatic Flora • 5 thought there would be no effect. • 3 were concerned algae would be affected but were not sure what the effects would be. • 1 did not know as one study contradicts the other. • 3 thought the amount of algae would increase. • 1 noted that stagnated water produced an increase in microbes and plants. • 1 thought the amount of algae would decrease. • 2 expressed concern about bringing in algae and weeds from the Red Deer River. More may be lost than gained if this occurs. One used the Gull Lake situation as an example. Since the Blindman River was diverted into Gull Lake it has been contaminated with weeds. • 1 said, though there may be an increase in flora, there are ways to control growth. When the water level was up a few years ago algae growth was slower. • 2 said the weeds couldnl be much worse than they are already. • 1 said there would likely be severe weed growth in the west end of the lake. • 1 said "itch levels" are greater with low water levels. • 2 thought there would be a change in composition of reed beds (Scirpus spp.). • 1 said weed/algae concerns would have to be addressed. • 1 referred to his letter in which he goes into great detail regarding aquatic flora. Diversion of Water Into Buffalo Lake - Fisheries • 2 said there would be no impact. • 7 had no comment. • 1 couldnl be sure what would happen. • 6 thought the number of fish would increase. • 1 said there would be a definite benefit. In the past Buffalo Lake was very productive, but the fish population has since declined. Stabilization of the water levels would enhance the fish. Fish kill in surrounding lakes is a concern. • 1 noted that when lake levels are high the fishing is better. • 1 "better" water meant "better" fish. 5 • 1 said fisheries depend on water quality changes. • 1 suggested that there could be greater numbers of fish but the quality would be questionable. • 1 said two aspects could be considered: the health of the fish and the quality of the fishing experience. If the stabilization goes ahead, an increased growth of macro and micro aquatic plants would detract from the fishing experience. • 1 noted that the fish couldnt spawn during the past few years so a lot of fish were lost. • 1 said there was less winter fish kill in shallow areas. • 1 said the fish reached the first ladder (on the Caryle property - Spotted Slough to Buffalo Lake) and then died. Since the creek has been channelled, there have been problems. • 1 didnt know if the fish ladders work so future impacts could not be predicted. • 1 said better algae growth will help fish. • 1 said better fish habitat will result. Diversion of Water Into Buffalo Lake - Wildlife • 1 thought effects on fish and wildlife project would have to be examined. • 1 said diversion would be better for wildlife. • 3 said there would be no negative effects on wildlife. • 1 said lake stabilization could enhance wildlife habitat by filling old dried bays. • 1 said wildlife habitat will decrease. • 2 stated that the Ducks Unlimited Project would be enhanced. • 1 thought Ducks Unlimited should support the project. • 1 said Ducks Unlimited was concerned. • 4 said duck populations would decline. • 8 said duck populations would increase. • 1 wondered about the possible effects on duck populations around the lake as a result of land buy up. • • • 1 indicated that the ducks and geese were so abundant that they ruined crops. 1 said this area is one of 20 important waterfowl breeding areas. 2 said there would be less problem with avian botulism. • 1 stated that duck botulism previously occurred as a result of stagnated water. There would be an enhancement to wildlife if water levels were raised due to increased plant growth and lake shoreline stability. • 1 saw no conflict between increased waterfowl and recreation. • 1 noted that the west end of the lake is a staging area for swans as a result of its unique qualities, particularly fewer pond weeds. There needs to be studies since none have been done to date. 6 • 1 complained that the project would have a severe impact on shore bird habitat as the lake bed is important for birds when sloughs dry up. • 1 was very concerned that there have been no studies on shore birds, waterfowl, or rare/endangered species. • • 2 said ft was likely that nesting islands for gulls and other birds would be lost. 1 noted a major colony of marsh wrens at the west end of the lake. Marsh wrens are not particularly common; therefore, it is an ideal colony. Their fate given stabilization is unknown. • 1 thought Buffalo Lake should be preserved because it is an important example of a shallow/marshy lake. • 1 noted that if wildlife were to increase to unsatisfactory levels, it could be controlled by increased hunting. Potential Project Impacts on Existing and Possible Future Agricultural Benefits Along Parlbv Creek • 4 saw no impact. • 7 had no comment. • 2 said the channel now benefits agriculture. • 1 said impact would depend on amount and flow time of the water. • 2 noted that there would be an impact on agriculture but no specifics were given. • 2 said irrigation was unlikely because the land is not fiat. • 2 said irrigation could occur in other areas but were not sure about potential in the immediate area. • 1 stated that irrigation is already present as a result of a 2.5 million dollar expenditure. There is no need for any further improvement. • • 1 noted that irrigation could occur for market gardens. 1 stated that more water would be better for the farm community. Care should be taken over water quality, especially about adding salinity in irrigation. • • 1 said there should be a benefit, especially for people who take hay off the flats near Mirror. 1 stated that irrigation on haylands in a dry year would lead to benefits if the farmer was able to invest in irrigation equipment. • 1 noted that there was a benefit on the Spotted Creek area as a result of backflooding. Now in a dry or wet year, hay production is guaranteed. This benefits only a select few. Property had been purchased at a very low rate. Those people have benefited from a free government program. • 1 refers to previous letters. Concern of farmers in the area was noted as was the importance • • of Spotted Lake as a hay producing area. 5 said there could be a loss of hayland. 3 were concerned about the timing of the draw down and prolonged flooding of hay flats. 7 • 1 said prolonged flooding decreases the better species of grasses. • 1 was mostly concerned about agricultural lands. If the drain down is effective there will be no ill effects. If there are no creek improvements then there will be concerns over spring flushes of rain and beaver activity, resulting in backflooding. • 1 said the water could be used for livestock. • 1 said the channel should be fenced. • 2 said erosion will cause loss of agricultural land. Other Environmental Concerns • 12 had no comments. • 1 refers to comments in previous letters. • 3 think the project is safe. • 1 acknowledged strong support for the project • 2 stated that something must be done. The lake is stagnant now. The project is necessary if Buffalo Lake is to continue to be a summer resort and a beautiful lake. • 1 thought altering a lake this size is "scary" but believes chances must be taken to improve the lake. • 1 suggested caution. • 1 said it was hard to predict possible changes. • 1 was concerned about the long term effects. • 1 said this was not a good project. • 1 said nature should be left alone. • • 1 said there should be concern about what is going into the lake now through run off. 2 reiterated a basic concern over algae. • 1 expressed concerns regarding salinity and the plants associated with it around the lake area. • • 1 wondered if it would be possible to do both projects using a southern pipeline route. 1 wondered if any cabins along the lakeshore would be affected. SOCIOECONOMIC CONCERNS Community Infra-Structure • 1 noted that the marina at Rochon Sands is almost non-useable. Rochon Sands has about 200 cottages and 30 residences on a full-time basis. Although Pelican Point Marina may be in deeper water there will be similar concerns. 8 • • 5 thought an assured water supply for Alix and Mirror was important. 1 who represented the Special Areas Committee noted that one village, (Concert) has water shortages much like Mirror and Alix. The Committee wants to ensure drought resistance • and stability for special areas. 1 said water would not be assured for Alix and Mirror. Recreation and Tourism • • 2 had no comment. 12 believed that tourism/recreation (swimming, boating, fishing) would increase. • 1 noted that the increase in tourism would be astronomical and would outweigh any negative • consequences. 1 said that numbers of local boaters would increase. • 1 was concerned that existing tourism/recreation would disappear if the lake level was not raised. • 1 thought Alix and Alix Lake would benefit from increased tourism. • 3 thought that no impact would occur. • 1 did not predict a great increase in the number of tourists coming into the area as a result of stabilization of the lake. Very limited changes could be expected. Tourists would go to the lake only if they had family or cabins there. The shoreline would not be the deciding factor. Much recreation is already present. • 1 noted that tourism/recreation would increase in resorts such as Pelican Point. The shallow lake hampers boating activities. The lake fluctuates with the seasons at present. Aesthetics • • 2 had no comment. 1 noted that there is nothing wrong with the way the lake looks at present. • 1 thought the shoreline would not change. • • 9 thought the shoreline would look better. 1 said that on the existing beaches (e.g. Rochon Sands, White Sand) the current lake levels mean that people go from sand to mud as a result of water level fluctuations. If the lake were higher there wouldnl be as much mud. The weed growth appears to be worse as a result of the shallowness of the lake. • 1 said the odour of the lake would be more pleasant if the water levels were increased. Now the lake smells because algae washes onto the beaches. 9 1 noted an improvement would occur unless the lake became weedy and the weeds washed up on the beaches as happens at Gull Lake. Someone would have to clean the beaches. 1 did not think anyone realizes how different the lake would be if stabilization goes ahead. The increased growth of weeds will significantly detract from the beauty of the lake. 1 said some people would be disappointed with the shoreline change. 1 thought the lake would be less attractive as trees were flooded on the shore. Economic and Employment Benefits • 4 had no comment. • 1 thought there would be no great economic benefit to the local area. • 1 said the project wouldn t bring in a lot of money. • 2 thought there would be some economic benefits to towns. • 11 thought there would be an increase in employment (from tourism, construction and the pumphouse). • • 1 noted the possibility of spinoffs of various types leading to increased employment. 1 noted the need for an overseer of the channel system. • 2 said that there would not be much of an increase in employment. Construction would provide some jobs, but any increase in employment would be limited and temporary. After five years or so, life would return to the way it was. • 1 noted there would be no increased hiring or only a slight increase because machines would do all the work. Land Use - General • 5 had no comment. • 1 said there would be no land use conflicts if the project was managed well. • 1 noted that a stabilized situation would provide better opportunities. • 5 thought there could be an increase in development and the number of cottages in the area. • 1 thought the above increase was unlikely because land in the area was not subdivided for this. • 1 thought care should be taken over the buy up of land, increased subdivisions, and decreased farmlands and woodlots. There should be controls over shorelines back one mile. • 4 had grave concerns about government spending on this project. • 1 noted that the fact that Mr. Getty had land on the lake was the deciding factor. • 1 wondered whether Mr. Getty's home on the lake is the reason for renewed interest. The project has been talked about for a long time, but not much has happened until recently. 10 • 1 suggested that there is a local feeling that the whole project is going ahead because Premier Getty is trying to pay a debt to Jean Macdonald of Old Macdonald's Campground. Jean Macdonald is a real estate operator and stands to make quite a lot of money because people will buy acreages. Land Use - Industrial • 2 stated that industrial development would not likely be encouraged. • 3 thought it might increase industrial development. Land Use - Agricultural • 1 had no comment. • 7 could foresee no agricultural benefits for the area. • 1 could foresee no change in agricultural land use. • 1 noted that the project would benefit only a select group. Some gained considerable new pastureland which they bought cheaply and now find to be valuable. • • 3 thought there could be a loss of reclaimed grazing land. 1 said the lake was now at a low level. If stabilized, the lake will cover considerably more areas of land. Farmers will have pasture taken from grazing. A quasi-legal situation of recompense arises. • 1 could foresee increased opportunities along Parlby Creek through controlled water flow. Farmers will be able to plan more effectively for crops as flooding will be reduced. • • 2 thought irrigation could be developed in the area. 1 said there might be more hunting as a result of increasing wetlands for ducks and geese. This hunting may lead to conflicts with farmers. PUBLIC PARTICIPATION • • 1 had no comment. 10 indicated a willingness to participate but did not specify any particular activities. • 6 would not attend public meetings, etc. • 6 would attend public meetings. • 1 stated that the Chamber of Commerce in Mirror might be willing to help organize public meetings. 11 \ • 2 said there should be public meetings. • 1 wished to see dissemination of information to the public. • 1 wanted notification of public meetings, etc. • 1 would attend an open house. • 1 said it is his policy to work behind the scenes, not in an open meeting or in a confrontation situation. The government could handle the situation better if it had the information required. FINAL COMMENTS • 9 had no comments. • 2 thought the project would benefit the area. • • 1 said there would be far more potential benefits than drawbacks. The consultants' report on past creek improvements yielded good returns. It is a commendable study. 1 said the lake should be stabilized if it is going to survive. Thousands of dollars have been invested in the expensive property around the lake. It would be a shame to let the lake reduce as it has done lately. There has not been sufficient moisture and run off to keep the lake level. • 1 said as the lake is the largest in central Alberta its stabilization would be a boom to the area. • 1 said if the algae and weed problem could be controlled, the project would be a very good idea. • • 1 said to go along with the project as there wouldn't be much money lost. 2 find it hard to believe the project is finally going ahead. • 2 were very happy that an independent study was being conducted. • 1 said a thorough study by knowledgable people is required. Caution is necessary; perhaps the area should be left alone. If there are two winters like the one in 1973, the lake will overflow and result in a great deal of flooding. The Tail Creek lowlands will flood when the snow melts after heavy snowfalls. • 2 saw the need for assessment and further studies before the project begins. 1 said the project has been studied "to death": Alberta Environment should just go ahead and complete the project. 1 indicated a need to put the project before the public. There should be no hidden agendas. 1 said the project should not go ahead. 1 indicated that ft would be better to put money where it is needed, towards hospitals, for example. 1 said the whole process looked "phony". If people built cabins around a slough they would just have to accept that water levels fluctuate. 12 1 suggested that 1 pumphouse instead of two should be constructed to guard against a decrease in water. 1 indicated that personal interest in the project related only to the pumphouse. 13 LIST OF INDIVIDUALS INTERVIEWED Anderson, Mr. Gavin L e c k i e , Ms. Sandra B i r d , Dr. C h a r l e s L i t w i n , Mr. Orest Braseth, Mr. Angus MacDonald, Jean Butz, Mr. Hans Ramsey, Ms. S h i r l e y C a r l y l e , Mr. Don Rea, Conibear, Mr. Bob S i s s i o n s , J.E.C. Fakas, Mr. Nick Smith, Lindsay G r a s s i c k , Mr. Stewart, Mr. Bob Patrick Myrt Grover, Mr. Ab Sturgeon, Mr. Jim Hankins, Ms. K a t h i e Walton, Ms. L i n d a Hoover, Mr. Reg W. Watt, Mr. R.S. Hubert, Mr. Dick Wershler, Mr. C l i v e I n i o n s , Mr. V i c W i l l i s , Mr. Roy Lake, Mr. Loyd Wilson, Mr. Don PARLBY CREEK/BUFFALO LAKE PROJECT BUFFALO LAKE STABILIZATION COMPONENT LIST OF INTERVIEWEES Mr. Garvin Anderson Box 2 Erskine, Alberta, TOC 1G0 742-8305 Dr. Chas Bird Box 165 Mirror, Alberta 788-2147 Mr. Angus Braseth Box 308 Bashaw, Alberta 372-3662 Mr. Hans Bute Mirror, Alberta TOB 3C0 788-3966 Don Carlyle 788-2153 Mr. Bob Conibear P.O. Box 220 Donalda, Alberta TOB 1H0 883-2345 883-2560 (h) Mr. Nick Fakas County Manager County of Stettler P.O. Box 1270 Stettler, Alberta, TOC 2L0 742-4441; 742-4528 (h) Mr. Patrick Grassick 105 Brown Crescent N.W. Calgary, Alberta T2L 1N4 Mr. Ab Grover Box 825 Hanna, Alberta TOJ 1PO 854-5600 Ms. Kathie Hankins P.O. Box 89 Stettler, Alberta TOC 2L0 742-2115 Mr. Reg W. Hoover 28 Stradbrooke Rise S.W. Calgary, Alberta T3H 1T9 Mr. Dick Hubert Box 61 Erskine, Alberta TOC 1G0 742-4685 Mr. Vic Inions Box 9 Mirror, Alberta TOB 3C0 788-2223 Ms. Martha Inions Box 9 Mirror, Alberta TOB 3C0 788-2223 Mr. Lloyd Lake Box 1414 Stettler, Alberta TOC 2L0 742-3846 (h) 742-2944 (o) Ms. Sandra Leckie Box 62 Duchess, Alberta TOJ 0Z0 378-4696 Mr. Orest Litwin Box 1330 Lacombe, Alberta 782-3660 Jean MacDonald Box 26 Erskine, Alberta 742-5661 Shirley Ramsay 747-2982 Myrt Rea Box 825 Stettler, Alberta TOC 2L0 J.E.C. Sissons Box 70 Alix, AlbertaTOC 0B0 747-2576 Lindsay Smith 4509 - 49 Avenue Stettler, Alberta TOC 2L0 742-1123 (o); 742-8954 (h) Mr. Bob Stewart Box 943 Stettler, Alberta TOC 2L0 742-4528 Jim Sturgeon Box 73 Mirror, Alberta TOB 3C0 788-2380 Linda Walton R.R. #1 Tees, Alberta TOC 2N0 788-2211 Mr. R.A. Watt Box 7 Busby, Alberta TOG OHO Cleve Wershler 430 - 15403 Deer Run Drive S.E. Calgary, Alberta 278-1025 Mr. Roy Willis Box 291 Erskine, Alberta TOC 1 JO 742-2395 Mr. Bob Willis 4023 - 58 Street Stettler, Alberta TOC 2L1 742-4567 Mr. Don Wilson Box 158 Mirror, Alberta TOB 3C0 788-3836 2 PARLBY CREEK/BUFFALO LAKE PROJECT BUFFALO LAKE STABILIZATION COMPONENT INTERVIEW GUIDE ENVIRONMENTAL ISSUES N.B. This is a guide for the interviewer to use to probe if respondents do not volunteer information. Respondents will not be asked these items as questions. Water Quality . Salinity levels in the lake may be diluted . Phosphorus levels could increase or decrease in the lake by diverting and conveying water through retention areas (Spotted Lake, Parlby Bay, Secondary Bay) • Pollutants in Red Deer River water may also be a cause of concern Hvdrogeology • Seepage (waterlogging! and soil salinization could arise in areas remote from the lake if the lake level is raised to become a source of recharge to the local groundwater flow system. Hydrology . The Red Deer River Flow regime could be affected by water withdrawal . The Conveyance System The lake/creek regime possible changes (i.e. through flooding or erosion) when flow augmentation is combined with natural run off events. Run off patterns, timing and contributing areas may change as a result of altering natural drainage patterns. . Buffalo Lake Shoreline stability impacts of lake stabilization on shoreline. (Not raising lake beyond existing 1974 lake level.) . Tail Creek and the Red Deer River Additional Sedimentation could occur in the Red Deer River below the creek mouth. Aquatic Flora . Alaae and aquatic macrophytes may increase in the lake if water quality is altered. Fisheries . The Red Deer River Fish habitat could be affected by water withdrawal. . The Conveyance System Northern Pike habitat in Spotted Lake and Parlby Creek between Spotted Lake and Parlby Bay could be influenced. . Buffalo Lake The fisheries potential may be seen as a benefit as dilution would improve conditions for northern pike. Perch could be introduced as a desirable fishing species. . Tail Creek and the Red Deer River Fish habitat could be affected by improvements on Tail Creek, installation of the control structure and sediment and salinity loadings of water flow. Fish habitat in the Red Deer River may also be an issue sediment loading of water. salinity and Wildlife . The Red Deer River . Riparais habitat could be altered by water withdrawal. • The Conveyance System • • Water fowl hahitat in Spotted Lake and Parley Creek could be influenced by water flow. Buffalo Lake Wildlife hahitat could be altered by stabilization of lake levels. Avian botulism risks to water fowl could be reduced by reducing mud flats. . The first phase of the North American Waterfowl Management plan could be jeopardized by flooding from raised lake levels. SOCIO-ECONOMIC ISSUES Community Infra-structure • Utilities, roads, farm operations and general access to the area may result from construction activities and systems operations. • Docks, camps, buildings and recreational areas around the lake could benefit by stabilized water levels. . Mirror and Alix may have an assured water supply from the conveyance system. . Road use in the local area will increase if tourism and recreation benefits are realized. Recreation . Improved swimming, boating and fishing may benefit campers and day users in the area as will owners of existing cottage properties. . The recreation potential of Alix Lake may improve with an assured flow of fresh water into it. Tourism . Improved recreation on the lake may attract greater numbers of tourists to the area. Aesthetics . Greater usual attractiveness may be achieved through water level stabilization (i.e. reduce the bad smell of rotting weeds, mold flats). . Reduction in attractiveness of lake may occur if algae and aquatic macrophytes increase. . Trees mav have to be removed from areas that are flooded to avoid unsightliness. Land Use N.B. . Alberta Environment not putting water in lake for industry or agriculture rather ft is for recreation. Industrial Industrial development fears as a result of a stable water source. . Agricultural Grazing land in the area could be flooded if lake water levels are raised. Irrigation potential could be increased with dilution of salinity and assurance of water supply from lake. Crop losses could occur in surrounding areas if water fowl increase on the lake. Economic Benefits • The towns of Alix. Mirror and Stettler may benefit from increased tourism and recreation. • Land owners in vicinity may benefit from increased markets for cottages and recreation facilities. Heritage Sites • Archaeological sites may exist on the shoreline and could be influenced by flooding. Water Rights • Downstream users could be affected by removal of water from the Red Deer River. PARLBY CREEK/BUFFALO LAKE PROJECT BUFFALO LAKE STABILIZATION COMPONENT ISSUE IDENTIFICATION NAME ADDRESS / TELEPHONE DATE To the interviewer: Explain you are with WEST (Western Environmental and Social Trends Inc.) in Calgary and you are part of the independent team of professionals working on the Environmental Impact Assessment (EIA) for the Parlby Creek/Buffalo Lake Project. You are calling to talk to him/her about issues that he/she feels might arise regarding the Project, especially the Buffalo Lake Stabilization Component. Preamble: As you are aware, Buffalo Lake is a large, shallow, moderately saline lake. The lake is a popular recreation site in the area, but the widely fluxuating water levels have reduced the recreational potential. In the early part of this decade, previous studies were commissioned by Alberta Environment to assess the feasibility of stabilizing the water level of Buffalo Lake. These studies determined that it was technically possible to divert water from the Red Deer River to Buffalo Lake via Parlby Creek. However, ft was noted that the project could have some adverse effect, notably an increase in algae on the lake and a decrease in lake salinity. Thus, there was the potential that efforts to increase the recreational capacity of the lake could have a negative effect on the lake's recreational potential. The same studies noted that benefits along the pipeline (or water conveyance route) included an assured water supply for the villages of Alix and Mirror. Other benefits included opportunities for irrigation resulting from the channelization of Parlby Creek. Due to other provincial water management priorities, it was decided to defer the project. Interest was recently renewed in the Parlby Creek/Buffalo Lake Project. Channelization of Parlby Creek from Highway 50 through Spotted Lake to Buffalo Lake already has been completed, and the agricultural benefits are being realized. Channelization of Parlby Creek from Alix Lake to Highway 50 will be completed next year. Because of this renewed interest, Alberta Environment reviewed past water quality studies and water quality data collected since 1984. The department concluded that algae bloom will increase but not to the extent previously suggested in earlier studies, but there is still the question of what are acceptable levels. Prior to a final decision on construction of a pump plant, pipeline and canal from the Red Deer River to Alix, the Minister of Environment has called for a formal Environmental Impact Assessment (EIA) regarding the Buffalo Lake Stabilization Component. To ensure objectivity, the Minister requested that the EIA process be carried out by a team of independent professionals on behalf of Alberta Environment. The environmental and socio­ economic impacts of the project are to be addressed in a raft EIA which will be available for public input and review. The final EIA will be reviewed by an independent public panel to be established by the Minister of Environment. WEST is the member of the Environmental Impact Assessment team responsible for public participation. The EIA team is led by Environmental Management Associates (EMA). WEST is calling key individuals at this time to determine the range of issues and public concerns that need to be addressed by the EIA. This issue scoping is only the first step. There will be other opportunities for public input over the next several months. Ask if the interviewee requires more information on the project or wishes more information in the Environmental Impact Assessment process. 2 Question 1: Environmental Issues Do you have any particular environmental concerns with the construction of a pumphouse, pipeline and canal to convey water from the Red Deer River to Alix? (If no information is offered, probe according to issues guide.) Some of the channelization between Alix and Parlby Bay has been completed. Some is yet to be completed. Do you have any environmental concerns with the flow of Red Deer River water through the existing and proposed channelization from Alix to Parlby Bay? (If no information is offered, probe according to issues guide.) Do you have any particular environmental concerns with the diversion of water into Buffalo Lake? 1) Water Quality: 2) Groundwater and Hydrology 3) Aquatic Flora 4) Fisheries 5) Wildlife Do you have any concerns with respect to potential project impacts on existing and possible future agricultural benefits along Parlby Creek. Do you have other environmental concerns which we have not yet discussed? 3 Question 2: Socio-Economic Issues Do you have any socio economic concerns or see opportunities with respect to the stabilization project? (If no information is offered, probe according to issues guide.) Agriculture Employment Land Use Tourism Recreation Aesthetics Question 3: Public Consultation and Information The Environmental Impact Assessment team will be providing interested groups and individuals with information on the Parlby Creek/Buffalo Lake assessment process. Do you wish to receive assessment updates and other relevant information on the stabilization project? Yes No The Environmental Impact Assessment team will also be providing the public with copies of the Draft Environmental Impact Assessment when it is completed. Do you wish to receive a complete copy, or a copy of the summary? Yes No 4 Would you be willing to participate in activities related to the project? (if they don't volunteer suggest open houses, briefings or public meetings) Ask this question for people in those areas most affected. Yes No Do you or your organization have information or reports that you feel could be relevant to the Environmental Impact Assessment process? If so, could you provide the title and source for the assessment team? (This may be important when talking to municipal employees, give WESTs address if it is not immediately available.) Community Futures Documents Regional Economic Development Regional Planning Do you have any final comments on the Parlby Creek/Buffalo Lake Project? If they have further concerns or ideas that they wish to share with us, give them our number, 262-8966, and inform them they may call collect. Finally, convey your appreciation for their time and co-operation. 5 SECTION 2.0 PUBLIC NOTIFICATION PUBLIC NOTICES (2) - List of Papers NEWSLETTER (2) - Distribution OPEN H O U S E - Sign in Sheets - List of Displays PUBLIC NOTICE ENVIRONMENTAL IMPACT ASSESSMENT FOR PARLBY CREEK/BUFFALO LAKE DEVELOPMENT BUFFALO LAKE STABILIZATION COMPONENT In response to local requests for the stabilization of water levels in Buffalo Lake. Alberta Environment has commissioned an Independent study on the project A comprehensive Environmental Impact Assessment (EIA) will be conducted by Environmental Management Associates of Calgary to ensure that this project In conjunction with the continuation of the Parlby Creek channelization component Is feasible without negative environmental impacts, either locally or regionally. The objectives of the Parlby Creek/Buffalo Lake development project are: * the provision of an assured water supply for Alix and Mirror. * the enhancement of recreational opportunities at Buffalo Lake through stabilization of the lake level, * the Improvement of agricultural benefits along Parlby Creek and Spotted Lake. The EIA continues the ongoing discussions with area residents that have been taking place since 1976: discussions which contributed to the planning of the Parlby Creek/Spotted Lake project and the setting of desirable levels for Buffalo Lake. HOW TO GET INVOLVED EIA Scoping Public Input Is being sought In determining the scope of the EIA. and reviewing the EIA Copies of the EIA Terms of Reference are available for public review. The Terms of Reference outline what will be contained In the draft EIA document For your copy of the Terms of Reference, or If you would like to comment on these Terms of Reference, please contact Environmental Management Consultants, prior to December 31, 1989. The EIA Review The draft EIA Is expected to be available for public and regulatory review early In 1990 with open-house discussions to follow. At these meetings, interested persons can speak with scientists, consultants and responsible officials about the findings. Public notices will be placed In local newspapers to keep area residents Informed. A final version of the E I A Including public comments, will be submitted for review by an Independent panel who will make a recommendation to the Minister of the Environment. More Information You are Invited to call Environmental Management Associates collect at (403) 245-1623 for details, or to be placed on the mailing list for more Information. If you have comments, please address them to: Environmental Management Associates. 1510-lOth Avenue S.W.. Calgary. T3C 0J5. PUBLIC NOTICE PARLBY CREEK - BUFFALO LAKE DEVELOPMENT PROJECT BUFFALO LAKE STABILIZATION COMPONENT A draft Environmental Impact Assessment (EIA) on the Parlby CreekBuffalo Lake Development Project is being prepared by a team of scientists led by Environmental Management Associates. This review of environmental data and of previous studies will determine if significant environmental impacts on the area will resultfromstabilizing the lake. A socio-economic component of the assessment is also close to completion. The draft EIA report will be available after March 1 at the following locations: Village Office of Alix Box 87, Alix, Alberta T0C0B0 747-2495 The Village of Rochon Sands County of Stettler c/o 16 Sands Street P.O. Box 1270 (Marina Street) Stettler, Alberta 742-5953 742-4441 Village of Mirror Box 130, Mirror, Alberta TOB 3C0 788-3011 Bashaw Town Office P.O. Box 510 Bashaw, Alberta TOB OHO 372 - 3911 The draft EIA summary is available now upon telephone request. MAKE YOU VIEWS KNOWN The Buffalo Lake Stabilization team has a commitment to ensuring the public is informed. That's why you are encouraged to: OPEN HOUSE DATE Saturday March 10, 1990 Erskine IOF Hall 12 to 5 p.m. i J . read copies of the EIA summary; . attend the open house where the scientists will be available to discuss the EIA; . submit a written brief to the EIA team before March 20, 1990. WHAT'S NEXT Thefinalversion of the EIA will include information gatheredfromthese sessions and from the written submissions to Alberta Environment. It will then be submitted to an independent panel to make recommendations on the suitability of the project. HOW TO CONTACT US Call collect (403) 245-1623 to receive copies of the draft EIA summary or to obtain information on the open house. If you are submitting a written brief, please send it to Environmental Management Associates, 1510 Tenth Avenue S.W., Calgarv AB T3C 0J5 (fax 245-6634) PUBLIC NOTICES Issue 1 Issue 2 December, 1989 and February, 1990 placed in the following papers: Bashaw Star Camrose Booster Camrose Canadian Castor Advance Innisfail Booster Innisfail Province Lacombe Globe Ponoka Herald Ponoka News Advertiser Rimbey Record Stettler Independent Bentley Bugle Red Deer Adviser/Red Deer Central Alberta Adviser(combo) Red Deer County News Red Deer Advocate/Advocate Plus (combo) Voice of Bowden Delburne/Trochu Highway 21 News ISSUE NO. 1 NEWSLETTER PARLBY CREEK - BUFFALO LAKE DEVELOPMENT PROJECT BUFFALO LAKE STABILIZATION COMPONENT What's Happening Around The Lake? In response to l o c a l requests to stabi­ lize water levels i n B u f f a l o L a k e and to b r i n g a n assured water supply to the villages o f A l i x a n d M i r r o r , A l b e r t a E n ­ v i r o n m e n t recently announced plans to p u m p water f r o m the R e d D e e r R i v e r through a conveyance system consisting of p i p e l i n e , canal and c o n t i n u a t i o n of c h a n n e l i m p r o v e m e n t s to P a r l b y C r e e k . S p e c i f i c objectives o f the development project are: • p r o v i d i n g a n assured water supply for A l i x and M i r r o r ; • enhancing recreational oppor­ tunities at Buffalo L a k e by stabil­ i z i n g the variable lake levels; and • c o n t i n u i n g a g r i c u l t u r a l benefits along Parlby Creek and Spotted Lake. P r i o r to m a k i n g a decision the M i n i s t e r of E n v i r o n m e n t c a l l e d for an i n d e ­ pendent study of the project. E n v i r o n ­ m e n t a l M a n a g e m e n t A s s o c i a t e s has b e e n c o m m i s s i o n e d to c o n d u c t a comprehensive E n v i r o n m e n t a l Impact Assessment ( E I A ) o n the P a r l b y C r e e k , B u f f a l o L a k e D e v e l o p m e n t Project. T h e study w i l l follow guidelines developed by A l b e r t a E n v i r o n m e n t for resource development projects. What Are The Objectives Of The Study? T h e P a r l b y C r e e k / Buffalo L a k e E I A is b e i n g p r e p a r e d to p r o v i d e information to the p u b l i c o n the extent and signifi­ cance o f the p r o j e c t ' s p o t e n t i a l en­ v i r o n m e n t a l impacts o n the area. O n e aspect o f the analysis is to identify m i t i ­ gation measures that may be a p p l i e d to offset any undesirable impacts and data gaps that l i m i t the study team's ability to assess impacts. Printed on Recycled Paper NEWSLETTER ISSUE NO. 1 The EIA Study Team: T h e team o f consultants a n d profes­ sional scientists c o n d u c t i n g the E I A study includes: • Environmental Management A s ­ sociates ( E M A ) , w i l l manage the study a n d u n d e r t a k e the wildlife, fisheries a n d historical resource components o f the E I A • H y d r o Q u a l Consultants Inc. w i l l complete the water quality and l i m nological assessments; • W - E - R Engineering L t d . will con­ duct the surface water assessment of the project; • G o l d e r Associates, will complete the g r o u n d water analysis of the Buf­ falo L a k e area; • D i m e n s i o n s Planning, w i l l conduct the s o c i o - e c o n o m i c assessment as part o f the E I A ; • Thompson Economic Consulting Services, w i l l d e v e l o p the costbenefit analysis o f the project; a n d • W e s t e r n E n v i r o n m e n t a n d Social Trends, w i l l b e responsible for issue scoping and public consultation components o f the project. A r e v i e w o f the extensive existing literature o n wildlife, aquatic life, water quality and vegetation is currently i n progress. N e w computer-based water quality analysis, using the latest water quality and hydrologic regime i n f o r m a ­ t i o n , is b e i n g c o n d u c t e d . T h i s w i l l incorporate the range of data presented i n previous studies, a n d new informa­ t i o n obtained from field data. O n c e the results o f c o m p u t e r p r e d i c ­ tions have b e e n assessed, an up-to-date assessment o f impacts c a n b e m a d e a n d / o r data d e f i c i e n c i e s i d e n t i f i e d . T h u s , p o t e n t i a l m i t i g a t i o n measures can b e based o n realistic scenarios. W o r k o n the s o c i o - e c o n o m i c study a n d cost-benefit analysis has also begun. Interviews with regional and local groups a n d officials are u n d e r way. A r e p r e s e n t a t i v e g r o u p o f about 30 p e o p l e have b e e n interviewed as part o f the i n i t i a l issue s c o p i n g to i d e n t i f y views and concerns w i t h respect to the project. Visits also have b e e n m a d e to groups a n d individuals to discuss ideas, o p p o r t u n i t i e s a n d issues o f c o n c e r n . T h e purpose o f this consultation was nfli to d e t e r m i n e h o w m a n y p e o p l e favour or oppose the project, but rather to scope out the range o f issues w h i c h s h o u l d be addressed i n the e n v i r o n ­ mental impact assessment. Printed on Recycled Paper NEWSLETTER ISSUE NO. 1 What We Heard From You How To Get Involved? Issues, concerns a n d aspirations raised d u r i n g the p r e l i m i n a r y issue scoping i n ­ clude the following: T h e project study t e a m want a l l area residents and interested groups and i n ­ dividuals to be fully i n f o r m e d and to have an opportunity to express their views about the project. • concerns about erosion along the Parlby C r e e k channel; • possible impacts on waterfowl which use Buffalo L a k e as a staging area; • water quality a n d quantity impacts on the R e d D e e r R i v e r as a result of diverting water; • c o n c e r n about project impacts o n agricultural practices i n the Parlby C r e e k area; • mitigation o f environmental i m ­ pacts a l o n g P a r l b y C r e e k through p r o p e r c h a n n e l i z a t i o n a n d water flow management; • c o n c e r n about possible algal b l o o m s o n Buffalo L a k e ; • potential benefits o f tourism result­ ing from stabilizing Buffalo L a k e water levels; a n d • the need for accurate project infor­ mation a n d the opportunity for the public to m a k e their views k n o w n . T h i s is the first i n a series o f news u p ­ dates w h i c h w i l l be distributed over the next few months to provide information on the study findings. A t present, E I A terms o f reference are available for p u b l i c review. T h e p u b l i c is invited to c o m m e n t o n these prior to D e c e m b e r 31,1989. O n c e the draft E I A is c o m p l e t e d i n 1990, the document also w i l l be avail­ able for p u b l i c review. T h i s constitutes the second stage o f the process. T h e public w i l l be invited to c o m m e n t o n the d o c u m e n t a n d p a r t i c i p a t e i n an open house a n d p u b l i c meeting. P u b l i c notices o f time a n d place w i l l be adver­ tised i n the local m e d i a . T h e o p e n house w i l l provide an opportunity to meet and discuss specific concerns with the scientists w h o prepare the d o c u ­ ments. T h e meeting, chaired by an i n ­ dependent moderator, w i l l be an important means o f providing the M i n ­ ister with p u b l i c input. The results o f these sessions and revised study documents w i l l comprise the final E I A . T h e E I A then w i l l be Printed on Recycled Paper ISSUE NO. 1 NEWSLETTER f o r w a r d e d to A l b e r t a E n v i r o n m e n t . T h e M i n i s t e r o f E n v i r o n m e n t has called for an independent E I A panel to m a k e r e c o m m e n d a t i o n s o n the suitability of the project. How To Contact Us A r e y o u w o n d e r i n g about the project? D o y o u want m o r e information? D o y o u have questions, concerns, sug­ gestions? Y o u r views and r e c o m m e n ­ dations are important and we want to hear from y o u . Please write or call E M A collect: Environmental Management Associates 1510 T e n t h A v e n u e S . W . Calgary, A l b e r t a T3COJ5 T e l e p h o n e : 245-1623 Fax: 245-6634 If y o u want to k e e p receiving this newsletter, please fill out this f o r m and m a i l it to E n v i r o n m e n t a l M a n a g e m e n t Associates. Name: Address: Postal C o d e : Telephone N o : Printed on Recycled Paper NEWSLETTER ISSUE NO. 2 PARLBY CREEK-BUFFALO LAKE DEVELOPMENT PROJECT BUFFALO LAKE STABILIZATION COMPONENT Since the first newsletter, the Buffalo L a k e E I A t e a m has been busy g a t h e r i n g i n f o r m a t i o n . A n d we have h e a r d from y o u ! T h i s second newsletter w i l l b r i n g you upto-date o n recent events as w e l l as i n f o r m you o f u p c o m i n g events. IN T H I S N E W S L E T T E R • Status report o f the E n v i r o n m e n t a l I m p a c t Assessment ( E I A ) ; • W h a t l a k e level is being evaluated? • Community Open House; and • W h a t ' s next. hhhhhhhhr-r-hr^hhhhhhr-hhhhhhr-hr-rENVIRONMENTAL IMPACT A S S E S S M E N T (EIA) STATUS R E P O R T D u r i n g the past several m o n t h s , the team of consultants a n d professional scientists have been w o r k i n g on the E I A . A s we i n d i c a t e d i n the first newsletter, the E I A w i l l determine i f there are significant e n v i r o n m e n t a l i m p a c t s on the area from s t a b i l i z i n g the l a k e . The E I A team has been a n a l y z i n g the m a n y previous studies done on Buffalo L a k e a n d the R e d D e e r R i v e r water. Recognizing water quality is of i m p o r t a n c e to everyone, special emphasis is b e i n g p l a c e d o n this area i n the E I A . T h u s comprehensive h y d r o l o g i c a l and water quality analysis have been conducted on the proposed conveyance route a n d lake. The E I A team also has investigated groundwater - l a k e water interaction. The wildlife component of the E I A is complete. T h i s includes a review of the potential positive benefits and potential negative i m p a c t s on waterfowl, c o l o n i a l nesting a n d shorebirds, furbearers and ungulate p o p u l a t i o n s a l o n g the convey­ ance route a n d Buffalo L a k e . A review o f the aquatic vegetation and fisheries is also complete. 2 The socio-economic component is close to completion. Many residents and organizations i n the study a r e a , i n c l u d i n g M i r r o r a n d A l i x , have c o n t r i b u t e d v a l u ­ able i n f o r m a t i o n to this aspect o f the assessment. the proposed range o f water levels, i n the following locations: W h i t e Sands, R o c h o n S a n d s ' m a r i n a a n d golf course, P e l i c a n P o i n t a n d at Scenic S a n d s . The findings of the various components are now being integrated. T h e i m p a c t assessment w i l l be made i n light of the area's n a t u r a l features a n d based on b a l a n c i n g the p r o b a b i l i t y , severity a n d d u r a t i o n s o f i m p a c t s . M i t i g a t i v e strate­ gies or habitat enhancement alternatives w i l l be identified based o n the a v a i l a b l e data. A n y d a t a gaps w i l l also be identified. hhhhhhhHHhhhU-hhHKH-hhHFhhhhh WHAT'S O n c e the draft E I A is completed we w i l l send out the s u m m a r y to a l l people who have put their names on o u r m a i l i n g list. F u l l copies o f the E I A a n d maps showing the m a x i m u m high water level w i l l be a v a i l a b l e for viewing after M a r c h 1st, at the following locations: • rH-rrHH-hhHrrhhhrhhhhhhhrrhhh V i l l a g e Office of A l i x Box 87, A l i x , A B T O C 0 B 0 W H A T L A K E L E V E L IS B E I N G EVALUATED? In the early 80's, residents a r o u n d Buffalo L a k e decided that l a k e levels s h o u l d be stabilized between 780.5 a n d 781.0 meters above sea level to best meet the widest p u b l i c needs. T h e E I A team has been reviewing a l l data a n d m o d e l l i n g the water q u a l i t y a n d quantity u s i n g this previously agreed u p o n range as the bench m a r k . A t present the l a k e level is at 780.0. NEXT? (403) 747-2495 • B a s h a w T o w n Office P . O . B o x 510, M a i n Street a n d 52nd Avenue B a s h a w , A B TOB OHO (403) 372-3911 • C o u n t y Office of Stettler 5006 - 47 A v e n u e P . O . B o x 1270 To help i l l u s t r a t e what the l a k e shore w o u l d look l i k e at the proposed m a x i m u m high water level, A l b e r t a E n v i r o n m e n t has developed a set o f maps taken from a e r i a l photos o f the l a k e . A s well, and i n response to the m a n y requests from residents, A l b e r t a E n v i r o n m e n t w i l l be putting i n stakes after M a r c h 1st to m a r k Stettler, A B T O C 2 L 0 (403) 742-4441 • V i l l a g e Office o f M i r r o r 5019 - 50 Avenue B o x 130, M i r r o r , A B T O B 3 C 0 (403) 788-3011 3 • rrrrrhrrrrhhrrrrrrrhrrrrrrrrr The V i l l a g e of Rochon Sands Marina - (403) 742-5953 16 Sands Street (Lori Frank) COMMUNITY OPEN HOUSE An open house will be held to provide you with an opportunity to speak with the EIA team and discuss the findings. After the open house, and the comments by the public are addressed, a final EIA will be submitted to Alberta Environment. The EIA will then be submitted to an independent panel to make recommen­ dations on the suitability of the project. hhrrrrrrrhhrrl-Frl-rhrrrhhhFrhr HOW TO • read copies of the EIA Summary; attend the open house where the scientists will be available to discuss Do you want more information? Do you have questions, concerns or suggestions? Please write or call EMA collect: Environmental Management The EIA team wants you to be fully informed on the project and to have an opportunity to express your views. That's why we are encouraging you to: • KEEP IN TOUCH: Associates Saturday, March 10th Erskine I00F Hall 12 to 5 p.m. the • EIA; submit a written brief to the EIA team by March 20th. Announcements of the Open House will be posted in the local papers. 1510 Tenth Avenue S.W. Calgary, Afi T3C Bus: 0J5 245-1623 Fax: 245-6634 Ifyou want to'keep receiving this newsletter, please fill out this form and Associates. If you mail it to Environmental Management have already mailed a form from the first newsletter you newsletters. Name: _ Address: (Postal Code) (Telephone Number) will receive the EIA summary and BUFFALO LAKE M O N T H L Y M E A N ELEVATIONS FROM ENV. CANADA STATION 05CD005 PARLBY CREEK - BUFFALO LAKE DEVELOPMENT PROJECT BUFFALO LAKE STABILIZATION PROJECT DISTRIBUTION OF NEWSLETTERS ISSUE NO.l February 1990 360 Alix, Alberta 30 Bashaw, A l b e r t a 1 Bentley, A l b e r t a Busby, A l b e r t a 1 Big V a l l e y , Alberta 1 B i t t e r n Lake, A l b e r t a 1 151 Calgary, A l b e r t a Camrose, A l b e r t a 1 1 Carstairs, Alberta 1 C1areshola, A l b e r t a 1 Clive, Alberta 1 Cochrane, A l b e r t a 2 Cornation, Alberta 2 Daysland, A l b e r t a Delta, Alberta 2 1 Didsbury, A l b e r t a DonaIda, A l b e r t a 3 2 DruBheller, Alberta 2 Duchess, A l b e r t a 2 E a s t Coulee, A l b e r t a 2 E c k v i l l e , Alberta 100 Edmonton, A l b e r t a 20 Erskine, Alberta 2 Evansburg, A l b e r t a Perm, A l b e r t a 1 2 Forestburg, A l b e r t a F t . McMurray, A l b e r t a 2 Ft.Saskatchewan, A l b e r t a 2 1 Grande Cache, A l b e r t a 1 Grande P r a i r i e , A l b e r t a 2 Hanna, A l b e r t a 2 Hussar, A l b e r t a 1 Huxley, A l b e r t a I n n i s f a i l , Alberta 1 I ma, A l b e r t a 1 1 Jasper, Alberta Kaslo, Alberta 1 Kelowna, B.C. 1 1 K i l l a a , Alberta ISSUE NO.2 March 1990 362 30 1 1 1 1 160 3 1 2 2 1 3 2 2 2 2 2 7 2 2 100 23 2 2 2 2 3 1 2 2 3 -2DISTRIBUTION OF NEWSLETTERS CONTINUED ISSUE NO.l February 1990 Kimberly, B.C. 1 Lacombe, A l b e r t a 17 Leduc, A l b e r t a 1 Lethbridge, A l b e r t a 1 Mirror, Alberta 390 Nevis, A l b e r t a 1 New Norway, A l b e r t a 1 O a k v i l l e , Ontario 1 Okotoks, A l b e r t a 1 Oshawa, O n t a r i o 1 Penbrooke, O n t a r i o 1 Pine Lake, A l b e r t a 1 Ponoka, A l b e r t a 1 P o r t l a n d , Oregon 1 P r i n c e Rupert, B.C. 1 Red Deer, A l b e r t a 25 Rimbey, A l b e r t a 1 Rockyford, A l b e r t a 1 Rocky Mt.House, A l b e r t a 1 Salmon Arm, B.C. 1 Saskatoon, Saskatchewan 1 Sedgewick, A l b e r t a 1 Sherwood Park, A l b e r t a 2 Sidney, A l b e r t a 1 Sooke, B.C. 1 St. A l b e r t , A l b e r t a 1 St. C a t h e r i n e s , O n t a r i o 1 Standard, A l b e r t a 1 Stettler, Alberta 193 Stonewall, O n t a r i o 1 Stony P l a i n , A l b e r t a 1 Surrey, B.C. 1 Sylvan Lake, A l b e r t a 1 Sundre, A l b e r t a 1 Tees, A l b e r t a 1 Three H i l l s , A l b e r t a 1 Trochu, A l b e r t a 1 Vancouver, B.C. 1 Vernon, B.C. 1 Veteran, A l b e r t a 1 V i c t o r i a , B.C. 1 TOTAL DISTRIBUTION 1375 ISSUE NO. 2 March 1990 1 17 1 1 396 1 2 1 1 1 1 1 2 1 1 26 1 1 2 1 1 1 6 2 1 8 1 1 198 1 1 1 1 1 2 2 2 1 1 1 1 1431 PARLBY CREEK-BUFFALO LAKE DEVELOPMENT PROJECT THANK YOU FOR ATTENDING THE OPEN HOUSE ERSKINE I00F HALL MARCH 10, 1990 NAME ADDRESS TELEPHONE <5hsu)oo J laA*. lb. g(EK7Y? c ORGANIZATION J^Jo S fa?. ?}U " 3 OX 25 0 ^4U-rl "Sox ii k c fes" ' S t x ;Kif k'r T, k(N e 8»v S)0?_ ST*-TTIS* 1 7 7 - F»o£ rysCG- *~cvi> 5, G OA. L rHU^ /3o> — ' <<< Sz***,